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Over recent years a small number of global multi-regional input–output (MRIO) databases were developed to
describe the entire global economy at high sector detail. We investigate the differences that arise out of applying
different construction procedures for two global MRIO databases: The EXIOBASE database, developed as part
of the EU FP6 & 7 programs and the Eora database developed at the University of Sydney. The procedures used
in EXIOBASE involve a high degree of interrogation and adjustment throughout the construction of the data
set, whilst the Eora MRIO relies on single-step mathematical programming techniques and high-performance
computing. We unravel the effect of the different approaches taken to develop the databases by undertaking
a number of combinatorial experiments in which we exchange parts of the construction process between the
EXIOBASE and Eora build pipelines. We conclude that Eora’s highly automated data reconciliation approach
produces MRIO databases that are of comparable quality to those constructed with EXIOBASE’s multi-step
approach. However, the reliability and robustness of the resulting MRIO database largely depend on the level of
detail and reliability of the underlying raw data.

Keywords: Multi-regional input–output analysis; Matrix balancing; Constrained optimisation; Automation;
Matrix distance

1. INTRODUCTION

Multi-regional input–output tables (MRIOs) are becoming increasingly policy-relevant
as climate policy negotiators are looking at consumption-based accounting (The Book-
ings Institution, 2013). Considerable work is now being undertaken on developing MRIO
databases (Daniels et al., 2011; Feng et al., 2011; Skelton et al., 2011; Su and Ang, 2011;
Ewing et al., 2012; Lenzen et al., 2012; Liu et al., 2012; Wilting, 2012; Andrew and
Peters, 2013; Lenzen et al., 2013; Tukker et al., 2013b; Wiedmann and Barrett, 2013; Galli
et al., 2013). However, comparisons (see editorial of this special issue) have shown that
these MRIO databases yield diverging results, for example for carbon footprints of nations
(Peters et al., 2012). Some of these divergences are due to different classifications and lev-
els of aggregation (see Steen-Olsen et al., 2014), some due to different initial assembly and
reconciliation techniques, and others are due to different source data being used (Owen and
Barrett, 2013). In general, all of the existing MRIO databases are affected by shortcomings
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 355

in at least one of these areas of divergence; there exists currently no MRIO database which
is better than any other.

The availability of several MRIO models is beneficial in testing the impacts of the differ-
ent construction techniques on final results. As a consequence the question arises of how
we can explore the different construction techniques across the models. Can we apply a
construction technique from one database, and apply it to the sector classifications and/or
source data of another database? And: How would the resulting MRIO database differ from
those original databases? To answer these questions, we undertake a number of numerical
experiments where we mix the initial estimate, constraints (i.e. data sources), and recon-
ciliation methods of three MRIO frameworks: EXIOBASE v1.0,1 EXOBASE v2.0 and
Eora.2 In particular, we take combinations of initial estimates (IEs) and constraints from
all three frameworks, and apply the Eora reconciliation method. The outcomes of these
experiments are then compared with the ‘pure’ EXIOBASE v1.0, EXIOBASE v2.0, and
Eora MRIO databases.

One of the purposes of this work is to compare the performance of single-step highly
automated matrix reconciliation techniques with multi step-wise approaches. To this end
we employ a derivative of the KRAS-type (Lenzen et al., 2010a) constrained optimisation
technique to resolve all differences in data and balances in one-step to construct global,
multiregional input–output tables for the year 2007.

In particular, we investigate the following MRIO components:

(1) Initial input data
(a) 2000 EXIOBASE v1.0 final data set,
(b) EXIOBASE v2.0 initial data set,3

(c) Eora data set for 2006. According to the workflow used for Eora, this serves as the
IE for 2007.

(2) Constraints
(a) Eora constraints data set,
(b) EXIOBASE v2.0 constraints data set.

(3) Reconciliation approaches
(a) EXIOBASE v1.0 (only for the original EXIOBASE v1.0 data set),
(b) EXIOBASE v2.0 (only for the original EXIOBASE v2.0 data set),
(c) Eora.

Using these components we come up with eight combinations of initial inputs, con-
straints and reconciliation methods. For each of these combinations, we construct an MRIO

1 The EXIOBASE database is currently available in two different versions: EXIOBASE v1.0 (developed from
the EXIOPOL project) is an MRIO framework for the year 2000, EXIOBASE v2.0 (developed from the CREEA
project) is an MRIO framework for the year 2007. EXIOBASE v2.0 is the result of EXIOPOL’s follow-up project.
The two databases (EXIOBASE v1.0 and EXIOBASE v2.0) differ in size and detail, but mainly cover the same
countries and regions. The different structures (particularly the sector classifications) of EXIOBASE v1.0 and
EXIOBASE v2.0 are discussed in Section 2.2. EXIOBASE is available under http://www.exiobase.eu/. The
database if briefly described in Appendix 1. For more detailed information, see Tukker et al. (2013a) and Tukker
(2013)
2 For more information on Eora, see Appendix 4, Lenzen et al. (2012, 2013) and Moran (2013).
3 A fully assembled IE data set for EXIOBASE v2.0 was not available at the time of this project. The construction
of the IE data set that was used during this project is described in Section 2.
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356 A. GESCHKE et al.

database in EXIOBASE v2.0 output format. We compare the MRIO databases resulting
from the various combinations using a set of matrix distance measures obtained from
the literature. These matrix distances provide an estimate of the ‘closeness’ of any of our
MRIO databases with their ‘pure’ counterparts.

All calculations that are performed during this project are controlled by a software pack-
age called AISHA, developed at the University of Sydney during the construction phase
of Eora (Geschke et al., 2011). AISHA is capable of constructing large-scale MRIOs of
arbitrary structure. AISHA is explained in Section 2.

This article unfolds as follows. In Section 2 we describe our methods and data, as well as
the MRIO databases which were constructed by combining the various combinations and
components. Section 3 presents the results obtained from the comparison of the different
databases. In Section 4 we draw conclusions and give an outlook.

2. METHODS

2.1. Numerical Experiments

We evaluate combinations of build pipeline components of three MRIO databases:
EXIOBASE v1.0 (in the following abbreviated by ‘X’), EXIOBASE v2.0 (C) and Eora
(E). We distinguish three such components: (1) the IE data set, (2) the set of constraints
imposed during the reconciliation process and (3) the reconciliation method. Note that the
EXIOBASE v2.0 IE used to construct databases in this study was constructed by expand-
ing export and import vectors according to trade shares. We used the approach developed
by Andrew and Peters for the GTAP database (Andrew and Peters, 2013). Therefore, we
abbreviate this IE as ‘G’, or refer to it as the ‘A&P-approach’. The original EXIOBASE
v2.0 IEs are not fully assembled. Instead, individual country IEs are constructed, which
are individually reconciled. The fully reconciled individual data sets are then used as the
domestic data blocks within the multi-regional framework. Finally, this multi-regional
framework is completed by constructing the trade blocks using a method similar to the
approach presented by Andrew and Peters (2013).

Each database can be uniquely represented by combining these shortcuts into a three-
letter abbreviation. The first letter refers to the IE, the second letter to the constraints data
set and the final to the construction method. The abbreviation ECE, for example, refers
to the database featuring Eora’s IE, EXIOBASE v2.0’s constraints data set and Eora’s
construction method (Table 1).

The MRIOs 1–3 in Table 1 were constructed according to the individual methodology
used for each database. These databases were not constructed during this project, only
taken as a reference point for the matrix distances reported in Section 3. The databases
4–8 were constructed according to the Eora construction method during the project. The
mathematical problem for reconciling MRIO databases as it is used in Eora’s construction
methodology is given by

min
τ

f (τ , τ 0, σ τ 0 , σ c) s.t. Mτ = c, l ≤ τ ≤ u. (1)

Within this equation, the databases are treated in a vectorised form. The IE is given by τ 0,
the constraints set is given by Mτ = c. The final, fully reconciled data set is given by the
variable τ .
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 357

TABLE 1. Databases used for this study.

No IE data set Const. data set Construction Short Notes

1 EXIOBASE v1.0 EXIOBASE v1.0 EXIOBASE v1.0 XXX Database not con-
structed during this
project, but used as a
reference

2 EXIOBASE v2.0 EXIOBASE v2.0 EXIOBASE v2.0 CCC Database not con-
structed during this
project, but used as a
reference

3 Eora Eora Eora EEE Database not con-
structed during this
project, but used as a
reference

4 EXIOBASE v1.0 EXIOBASE v2.0 Eora XCE
5 EXIOBASE v2.0 EXIOBASE v2.0 Eora GCE see Section 2.4.1
6 Eora EXIOBASE v2.0 Eora ECE

7 EXIOBASE v1.0 Eora Eora XEE
8 EXIOBASE v2.0 Eora Eora GEE see Section 2.4.1

Notes: The databases numbered 1–3 were used as reference tables for this study. The databases 4–6 were rec-
onciled according to the EXIOBASE v2.0 constraints set, the remaining databases were reconciled according
to the Eora constraints set.

For example, if we were to identify each of the variables by putting the name of the
database into the subscript of that variable, then database no. 4 would be given by

min
τXCE

f (τXCE, τ 0
EXIOBASE v1.0, σ τ 0

EXIOBASE v1.0
, σ cEXIOBASE v2.0)

s.t. MEXIOBASE v2.0τXCE = cEXIOBASE v2.0, l ≤ τXCE ≤ u.

The boundary vectors u and l are invariant under the data sets as they depend on the final
classification (which is is equal for all databases).

The entire work flow of models 4–8 is controlled by a software package called AISHA,
developed at the University of Sydney during the construction phase of Eora (Geschke
et al., 2011). AISHA is capable of constructing large-scale MRIOs of arbitrary structure.
The key steps in the AISHA workflow are

(1) Construction of a fully populated IE.
(2) Construction of a constraints data set according to the user’s specifications.
(3) Reconciliation of MRIO.
(4) Recovery of the result of the reconciliation process, and data export in various formats.

2.2. Bridging Different Regional and Sectoral Classifications

The three MRIO databases that were used in this publication have different classification
systems. These are:
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358 A. GESCHKE et al.

• EXIOBASE v1.0. EXIOBASE v1.0’s classification system is a homogeneous supply-use
tables (SUTs) classification. EXIOBASE v1.0 has 44 regions, each of these repre-
sented by an SUT structure. EXIOBASE v1.0 focuses on European countries and major
economies outside Europe. The first 43 regions of EXIOBASE v1.0 are dedicated to
individual countries, the last region summarises the remaining countries into a Rest-of-
the-Word (RoW) region. EXIOBASE v1.0 features 129 industries and 129 products for
each of its regions. For this project, only the basic price sheet was used.

• EXIOBASE v2.0 (EXIOBASE 2.0). EXIOBASE v2.0’s classification system is a homo-
geneous classification SUT-classification. EXIOBASE v2.0 has 48 regions in total, each
of these represented by a supply-use structure. The first 43 regions are identical to those
in EXIOBASE v1.0, but the RoW-region is divided into five different regions. Within
each of these five RoW-regions, all RoW-countries belonging to a particular geographic
region are summarised. EXIOBASE v2.0 offers a higher sectoral detail than EXIOBASE
v1.0. It features 163 industries and 200 products for each of its 48 regions. EXIOBASE
v2.0 also offers a number of valuations on top of the basic price sheet. However, for this
project only the basic price sheet will be used. EXIOBASE v2.0 is available for the year
2007.

• Eora. The Eora database has a heterogenous classification structure. It features 187
regions, which all correspond to individual countries. The sector classifications for each
country range from 25 to 500 sectors. Where possible, the native classifications are
preserved for individual countries. Hence, Eora features industry input–output tables
(IIOT), commodity input–output tables (CIOT), as well as SUT structures. Eora features
five valuation sheets (basic price, trade margin, transport margin, taxes and subsidies),
and it is available as a time series for each year from 1990 until 2011.

All MRIO databases in this project were constructed

(1) for the year 2007 (the same year that EXIOBASE v2.0 was constructed for),
(2) in EXIOBASE v2.0’s regional and sectoral classification and
(3) using Eora’s five valuation sheets.

The classification defined by points 2 and 3 will be referred to as the final classification.
The final classification has the following regional and sectors structure

• 48 regions,
• each region to be represented in the SUT structure,
• 163 industry sectors,
• 200 product sectors,
• 7 final demand sectors,
• 6 value-added sectors,

and the valuations

• basic price,
• trade and,
• transport margin,
• taxes and
• subsidies.
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 359

For the data preparation, it is therefore generally sufficient to develop concordances that
map Eora or EXIOBASE v1.0 to the EXIOBASE v2.0 classification.

For all databases, the unit for the data is million Euros. This is the generic unit for
EXIOBASE v2.0 and EXIOBASE v1.0. Eora, however, is published in thousand US-
dollars (USD). The official IMF-based exchange rate for the year 2007 is given by 1
Euro = 1.3705 USD.4

All databases (nos. 4–8 in Table 1) were reconciled in the final classification. Hence, the
EXIOBASE v1.0 data set, the Eora IE data set and the Eora constraints data set had to be
converted, in order to align with the final classification.

2.3. Overall Work Flow

The process to obtain an MRIO database can be summarised in the following four steps.

(1) One of the available IE is selected and vectorised as a N × 1 vector τ 0 (assuming the
IE contains N values).

(2) All available constraints’ data (assume M points) are collated into a vector c.
(3) An M × N matrix M is set up that contains constraint coefficients describing the rela-

tionship between M constraints’ data points and N MRIO table elements. In addition,
vectors l and u of the dimension N × 1 are constructed that contain lower and upper
boundaries on all MRIO elements in τ . These lower and upper boundaries result from
definitions of accounting variables. For example, the boundaries for changes in inven-
tories are [−∞, +∞], those for subsidies are [−∞, 0], and those for remaining MRIO
elements are [0, +∞]. Finally, two vectors σ τ 0 and σ c holding information about
the reliability (in the form of standard deviations) for each element of τ 0 and c are
constructed.

(4) A constrained optimisation algorithm is invoked for finding a solution for τ that
best fulfils the constraints Mτ = c and l ≤ τ ≤ u, whilst minimising the departure
of τ from its IE τ 0. The complete data reconciliation problem then becomes (see
Equation 1).

min
τ

f (τ , τ 0, σ τ 0 , σ c) s.t. Mτ = c, l ≤ τ ≤ u.

The optimisation step is necessary because the number of MRIO elements by far
exceeds the number of constraints, and there is not enough information to analytically
solve the system for τ . The objectives ‘best fulfils’ and ‘minimises departure’ can be
specified mathematically. Whilst there exists a plethora of optimisation approaches,
the literature on input–output table estimation favours variants of the RAS iterative
scaling method (Bacharach, 1970), and Quadratic Programming algorithms (van der
Ploeg, 1988). These methods differ by the quantitative specification for penalties that
are imposed for any departure of τ from the initial data τ 0. This departure becomes
necessary in order to fulfil the constraints Mτ = c and l ≤ τ ≤ u.

A detailed description of the data reconciliation process based on Geschke et al.
(2011) is given in Appendix 1.

4 A full list of exchange rates is available under http://unstats.un.org/unsd/snaama/dnlList.asp.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 0
5:

20
 0

9 
O

ct
ob

er
 2

01
7 

http://unstats.un.org/unsd/snaama/dnlList.asp


360 A. GESCHKE et al.

Assuming that constraint data points ci are the means of normally distributed sets of
observations, we estimate standard deviations of these constraints’ data points. These esti-
mations are based on published data or expert interviews, but mostly set according to
certain world views on the uncertainty of various sets of constraints data. Generally, it can
be found that smaller constraint data values are associated with higher relative standard
deviations, and vice versa.

Second, a modified RAS optimisation algorithm is employed in order to fit standard

deviations στ j to an error propagation formula σ ci =
√∑

j(Mijστ j)
2 . This procedure is

consistent with the estimation of the (vectorised) MRIO τ , based on constraints data c. In
fact, the error propagation formula can be derived from the optimisation condition Mτ = c.
The σ τ are influenced by two factors. The first is an uncertainty characteristic: the smaller
the uncertainty σ ci of a constraints data point ci, the smaller the uncertainty σ τ of MRIO
elements addressed by this constraints data item. The second is a data conflict character-
istic: the pre-modified-RAS IE στ 0 of the στ is set to the difference between the MRIO
IE τ 0 and the MRIO final solution τ . This difference is influenced by the conflict in the
constraint data, because conflicting constraint data lead to movements in elements during
optimiser runs. For further details, see Lenzen et al. (2010b).

2.4. Data Preparation

2.4.1. Concordances and Preparation of the IE Data sets

In order to convert the Eora IE or EXIOBASE v1.0 IE given in Eora or EXIOBASE v1.0
classification into IE data sets given in EXIOBASE v2.0 classification, concordances CEora

pre

and CEora
post must be be generated. Assume TEora

Eora Class is Eora’s intermediate demand matrix
in Eora classification, and TEora

EXIOBASE v2.0 Class is the matrix holding the same data following
the conversion into EXIOBASE v2.0 classification. Then CEora

pre and CEora
post should operate

as follows (assuming that the normalisation described in this section has been carried out):

TEora
EXIOBASE v2.0 Class = CEora

pre TEora
Eora ClassC

Eora
post .

The concordances are constructed in two steps:

(1) For each country in Eora, construct the pre- and post-concordances between the Eora
classification for the particular country and EXIOBASE v2.0’s SUT structure. This is
achieved using the harmonised system (HS) classification as a bridging classification.
Concordances between Eora and HS as well as EXIOBASE v2.0 and HS are used to
construct country-wise Eora-to-EXIOBASE v2.0 concordances.

(2) The country-specific concordances are then combined to form the full pre- and post
concordances CEora

pre and CEora
post . The placing of each individual country-specific concor-

dance into CEora
pre and CEora

post then reflects which of Eora’s countries are represented as
individual regions in the EXIOBASE v2.0 classification (such as the EU-27 countries,
China, or the USA), and which ones are summarised into broader regions (such as the
majority of the African countries which are summarised in one of EXIOBASE v2.0’s
RoW-regions).
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 361

In a similar way, concordances are constructed to convert the final demand and value-added
matrices.

Eora’s IE for the year 2007 is, according to the Eora workflow, the final Eora model for
the year 2006. Converting each sheet of this MRIO from Eora classification into the final
classification can be achieved by applying pre- and post-maps MEora

pre and MEora
post such that

TEora
EXIOBASE v2.0 Class = MEora

pre TEora
Eora ClassM

Eora
post .

The pre- and post-maps MEora
pre and MEora

post are the normalised concordances CEora
pre and CEora

post
which were described at the beginning at this section. The normalisation was achieved by
prorating the concordances according to a feasible proxy. The normalisation yields a map.
The difference between a map and a concordance is that a concordance only contains 0
and 1 as values. If a sector in the source classification is disaggregated by a concordance,
its values would be fully assigned to multiple sectors in the target classification, which in
return leads to double counting. Hence, if a sector is to be disaggregated, then each affected
transaction value must be distributed across all target sectors. A proxy vector determines
the ratios between the different sectors of the target classification that are to be used for a
disaggregation. A map is a normalised concordance which considers these ratios. Hence, a
map may feature any given value between 0 and 1. By using a map for the conversion of
Eora data into EXIOBASE v2.0 classification, the total sector outputs of Eora are preserved
in the EXIOBASE v2.0 classification.

The proxy used for the normalisation of CEora
pre and CEora

post to obtain MEora
pre and MEora

post was
the gross output vector of the final EXIOBASE v2.0 model (database CCC in Table 1),
which was the only available proxy in the EXIOBASE v2.0 classification.

For the EXIOBASE v1.0 data set, the concept for the construction of the concordances
is identical to the one for the Eora-to-EXIOBASE v2.0 concordances. Required are two
(normalised) concordances such that

TEXIOBASE v1.0
EXIOBASE v2.0 Class = CEXIOBASE v1.0

pre TEXIOBASE v1.0
EXIOBASE v1.0 ClassC

EXIOBASE v1.0
post .

The construction of concordances to convert the EXIOBASE v1.0 data set from
EXIOBASE v1.0 classification into an EXIOBASE v1.0 data set in EXIOBASE v2.0
classification was less complex than for the Eora data set.

EXIOBASE v1.0’s first 43 regions are identical to those of EXIOBASE v2.0, and
both EXIOBASE v1.0 and EXIOBASE v2.0 follow a strictly homogenous SUT structure.
Hence, it is only required to construct one country-wise concordance in order to account
for the different sector classifications of EXIOBASE v1.0 and EXIOBASE v2.0. This
country-wise concordance is then be used for each of the first 43 countries in EXIOBASE
v1.0.

The construction of the final part of the concordances presents a situation which has not
been encountered during the construction of the Eora-to-EXIOBASE v2.0 concordances:
regional disaggregations. EXIOBASE v1.0 only features one RoW-region, EXIOBASE
v2.0 features five. Hence, EXIOBASE v1.0’s RoW-region must be disaggregated to
EXIOBASE v2.0’s five RoW-regions.

The task of converting the EXIOBASE v1.0 IE in EXIOBASE v1.0 classification into
an EXIOBASE v1.0 IE in EXIOBASE v2.0 classification is essentially identical to the
conversion of the Eora IE in Eora classification into an Eora IE in EXIOBASE v2.0 classi-
fication. Following the preparation of the concordances CEXIOBASE v1.0

pre and CEXIOBASE v1.0
post ,
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these concordances are normalised using the same EXIOBASE v2.0 proxy (EXIOBASE
v2.0’s gross output vector) to obtain pre- and post maps. The conversion is then given by

TEXIOBASE v1.0
EXIOBASE v2.0 Class = MEXIOBASE v1.0

pre TEXIOBASE v1.0
EXIOBASE v1.0 ClassM

EXIOBASE v1.0
post .

The use of EXIOBASE v2.0’s gross output vector as a proxy introduces a certain
element of bias or interdependency into the pre- and post-maps. At this point, pro-
cessed EXIOBASE v2.0 data are used to convert Eora data from Eora classification into
EXIOBASE v2.0 classification. This is clearly not desirable, as it, at least theoretically,
mixes Eora data and processed EXIOBASE v2.0 data. Implicitly, the converted Eora data
set contains information obtained through EXIOBASE v2.0’s data processing method. In
order to avoid this problem, a different proxy vector in EXIOBASE v2.0 classification must
be used. For example, the gross output of a fully assembled yet unprocessed EXIOBASE
v2.0 IE in EXIOBASE v2.0 classification. Such an IE is not available, as the EXIOBASE
v2.0 construction method does not include the construction of a fully populated IE. Hence,
the EXIOBASE v2.0 gross output vector, which is used as a proxy in this case, is the
only available proxy vector in EXIOBASE v2.0 classification. However, the converted
Eora table still does not contain any processed EXIOBASE v2.0 data. The proxy vector
is only used to split Eora data points across a number of sectors in the case of sectoral
disaggregation. Hence, the bias caused by the use of this proxy vector is expected to be
negligible.

The methodology used to construct the EXIOBASE v2.0 database did not follow the
closed optimisation approach that is given in Equation 1. EXIOBASE v2.0 was con-
structed using a multi-stage process. A full single set of IE data (which is required for
the reconciliation method used in this study) was not generated during the EXIOBASE
v2.0 project.

In order to obtain an IE data set for the EXIOBASE v2.0 database that can be used
for the reconciliation approach of Equation 1, we use available EXIOBASE v2.0 raw data
for the domestic data, and initial trade data based on UN Comtrade data and UN main
aggregates data. There was no initial estimate trade data for EXIOBASE v2.0 available.
Both these data sets were originally misaligned, and therefore had to be converted into
the final classification. The strategy that was used to construct the IE data is described in
Andrew and Peters (2013). We refer to this strategy as the A&P approach.

Since this IE is not the same data set as the underlying data set of the EXIOBASE v2.0
model, it is not referred to as C in the list of different databases in Table 1. Instead, this IE
data set is referred to as G. It was used for the databases 5 and 8 (short form GCE, GEE)
in Table 1.

2.4.2. Preparation of the Constraints’ Data sets

The EXIOBASE v2.0 constraints data set was constructed from various sets of source data
and directly imported into AISHA.

This constraints data set can be broadly divided into three different types of con-
straints.

(1) Balancing and boundary constraints. These are the standard constraints to balance
an MRIO table, and the definition of the boundaries for each element of the MRIO.
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 363

These constraints are independent of the actual source data for the EXIOBASE v2.0
constraints set.

(2) SUT constraints data. The SUT constraints data set is the most important of all source
data sets for the EXIOBASE v2.0 constraints. The SUT data contain aggregated SUT
tables for every region of the EXIOBASE v2.0 classification. Additionally, constraints
data for final demand, value added, as well as import- and export totals are given. The
source data are given in a 59-industry/59-product classification. This is the standard
Eurostat table classification for EU countries, based on NACE.5 All data of the SUT
data set are used as so-called point constraints (as opposed to ratio constraints), mean-
ing that the actual values are used as constraints. See Appendix 1, Equation A4 for an
example on how data are used as point constraints.

(3) Numerous source data sets on trade, product groups, and domestic SUT tables. All
remaining source data are implemented as ratio constraints. The difference between
ratio constraints and point constraints is that ratio constraints do not constrain elements
of the MRIO to equal a certain value, but merely to constrain a (sub-)set of values
within the MRIO to be in the same ratio to one another as the source data points
are. The easiest example would be a two-points ratio constraint defining that MRIO
element τ i is for example twice a big as MRIO element τ j, without defining the actual
absolute values of neither τ i nor τ j. See Appendix 1, Equation A7 for an example on
how data are used as ratio constraints.

Generally speaking, using data as ratio constraints generates more non-zero coefficients
in the constraints matrix M in Equation 1 compared to using data as points constraints.
Since for the EXIOBASE v2.0 constraints data set, large amounts of source data were
used as ratio constraints, the number of non-zero coefficients in M added up to approx. 20
billion. The implications of this large amount of data on the computational implementation
of the reconciliation routine will be discussed in Section 2.5.

The Eora constraints data set was available in Eora’s classification from the Eora
database. Since Eora’s sheets are identical to the sheets of the final classification, the con-
version constraints data set in Eora classification into a constraints data set in EXIOBASE
v2.0 classification requires the conversion of the regional and sectoral classification only,
without altering the structure of the valuations. There are generally two ways to reconcile
an IE in EXIOBASE v2.0 classification subject to the Eora constraints set:

(1) Convert the IE in EXIOBASE v2.0 classification into and IE in Eora classification,
execute the reconciliation using a constraints data set in Eora classification, and then
convert the result back into EXIOBASE v2.0 classification (two conversions required).

(2) Convert the constraints data set in Eora classification into a constraints data set in
EXIOBASE v2.0 classification, and complete the reconciliation task in EXIOBASE
v2.0 classification (one conversion required).

The first option is mathematically and computationally easier. The conversion of an IE in
EXIOBASE v2.0 classification into an IE in Eora classification is similar to the conversions

5 NACE is the Statistical classification of economic activities in the European Community. For more information
on NACE, see http://epp.eurostat.ec.europa.eu/portal/page/portal/nace_rev2/introduction.
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described in Section 2.4.1. But the first option requires two conversion: first the conversion
of the data set from EXIOBASE v2.0 classification into Eora classification, and secondly
the conversion of the result of the reconciliation process from Eora classification back
into EXIOBASE v2.0 classification. In each conversion process, the normalisation of the
concordance matrices introduces certain assumptions to the converted data set. This results
in the loss of data accuracy. While the conversion of data sets was necessary in this study,
the authors tried to minimise the number of conversions for each data set. Hence, option
two was chosen for the reconciliation of data according to Eora constraints: the conversion
of Eora’s constraints data set in Eora classification into Eora’s constraints data set in the
final classification.

This conversion presents the most complex part of this study. The complexity arises
from a combination of different factors. Firstly, the sheer amount of data that have to
be processed in order to convert Eora’s constraints matrix from Eora classification into
the final classification. Secondly, the mathematical complexity of task. And finally, the
implementation of an algorithm which carries out the conversion task in an acceptable
time frame using the given computing resources. The basics of the mathematical concepts
of this conversion will be discussed in this section and the computational challenges will
be briefly discussed in Section 2.5.

Eora’s constraints data set for the year 2007 is available from the Eora database. The
data sources considered for this constraints data set are discussed in detail in Lenzen et al.
(2012, 2013).

For this section, let MEora be Eora’s constraint matrix in Eora classification, and let Mfinal

be Eora’s constraint matrix in the final classification.
According to Equation 1, the constraints matrix MEora (not to be confused with the pre-

and post maps Mpre and Mpost that were used earlier) operates on the vectorised representa-
tion τ of an MRIO T. The rows of the constraints matrix refer to the different constraints,
the columns refer to the elements in the vectorised MRIO τ . Hence, a conversion of MEora

to Mfinal only calls for a suitable post-map for MEora. The number of rows in MEora and
Mfinal is identical, since the number of constraints is invariant under a classification change.

Assume that GM is the required post-map, then

Mfinal = MEoraGM (2)

holds.
The pre- and post concordances for the conversion of any data set in Eora classification

into the final classification operate on the table format T of the MRIO. They do not operate
on the vectorised format τ that the constraints matrix MEora operates on. Hence, GM must
be constructed from these pre- and post concordances.

The issue of data disaggregation was already discussed in Section 2.4.1: if a data point
within the Eora classification is disaggregated when converted into the final classification,
the concordances have to be normalised in order to avoid double counting of this data
point. For the constraints matrix, the issue of (dis-)aggregation and normalisation is the
contrary: disaggregation does not require any normalisation, but aggregation does.

Consider two points τEora
1 and τEora

2 in the vectorised MRIO in Eora classification. Con-
sider further the conversion in the final classification maps τEora

1 onto two points, say
τ final

1 and τ final
2 , and the point τEora

2 is mapped onto a single point, say τ final
3 . If this con-

version is normalised, then τEora
1 = τ final

1 + τ final
2 holds. For a constraint equation in Eora
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classification

m1τ
Eora
1 + m2τ

Eora
2 = c

the equivalent equation in the final classification is

m1(τ
final
1 + τ final

2 ) + m2τ
final
3 = c.

This is simply

m1τ
final
1 + m1τ

final
2 + m2τ

final
3 = c.

Hence, in the case of disaggregation, the matrix coefficient for a particular element in
the Eora classification is simply used for each of the corresponding elements in the final
classification. No special treatment of the coefficients m1 and m2 is necessary to yield an
equivalent constraints equation in the final classification.

In the case of aggregation, the situation is different. For this example, assume an MRIO

T =
⎛
⎝t11 t12

t21 t22

t31 t32

⎞
⎠ ,

a row-wise vectorisation, i.e.

τ =

⎛
⎜⎜⎜⎜⎜⎜⎝

t11

t12

t21

t22

t31

t32

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the following constraints:

t21 + t22 = 4,

t31 + t32 = 5,

t11 + t12 = 3.

(3)

Hence, the constraints equation for this MRIO is⎛
⎝0 0 1 1 0 0

0 0 0 0 1 1
1 1 0 0 0 0

⎞
⎠

︸ ︷︷ ︸
=:Mτ

τ =
⎛
⎝4

5
3

⎞
⎠

︸︷︷ ︸
=:c

.

Further, consider the following pre-concordance for T

Cpre =
(

1 0 0
0 1 1

)
.

Applying this pre-concordance to T aggregates the second and the third row as follows:

CpreT =
(

t11 t12

t21 + t31 t22 + t32

)
︸ ︷︷ ︸

=:F

.
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Using the same concept for the vectorisation of F that was used for the vectorisation of T,
the vectorisation ϕ is

ϕ =

⎛
⎜⎜⎝

t11

t12

t21 + t31

t22 + t32

⎞
⎟⎟⎠ .

Since the second and third rows of T are aggregated in the final MRIO F, the first and
second equations of the constraints set in Equation 3 cannot be explicitly formulated for
F. At this point, another assumption must be made: ‘normalisations’ of the sums t21 + t31

and t22 + t32 such that

p1 · (t21 + t31) = t21,

(1 − p1) · (t21 + t31) = t31

(4)

for a 0 < p1 < 1 and

p2 · (t22 + t32) = t22,

(1 − p2) · (t22 + t32) = t32

(5)

for a 0 < p2 < 1. Hence, a certain ratio between the elements in a sum must be assumed
in order to be able to formulate the original constraints given in the first two equation of
the constraints set in Equation 3. This strategy is similar to the disaggregation of MRIOs
where a certain ratio between the different target sectors of the disaggregation is assumed.
For this study, the authors chose the gross outputs of rows of T (in our case: Eora) as ratios
for p1 and p2. This implies that p1 = p2. For this example, assume that p1 = p2 = 0.3.
Then the constraint equations 3 can be reformulated for F as

0.3 · (t21 + t31) + 0.3 · (t22 + t32) = 4,

0.7 · (t21 + t31) + 0.7 · (t22 + t32) = 5,

t11 + t12 = 3.

(6)

These constraints can be reformulated as⎛
⎝0 0 0.3 0.3

0 0 0.7 0.7
1 1 0 0

⎞
⎠

︸ ︷︷ ︸
=:Mϕ

ϕ =
⎛
⎝4

5
3

⎞
⎠ .

Now that Mτ and Mϕ are both available (for the big picture: Mτ refers to Eora, Mϕ refers
to EXIOBASE v2.0), GM can be constructed. It is given by

GM =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0.3 0
0 0 0 0.3
0 0 0.7 0
0 0 0 0.7

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 367

And hence

Mϕ = Mτ GM

A similar procedure yields the matrix GM belonging to a post concordance, which is
applied to the initial MRIO T. Once both GM matrices have been constructed, they must
be multiplied to form the final GM matrix.

As mentioned before, the shape of GM depends on the vectorisation of the MRIOs. A
different vectorisation will yield a different row- and column order in GM. To understand
the structure of GM for this example, consider the ‘normalised’, transposed version of Cpre

(called MT
pre).

MT
pre =

⎛
⎝1 0

0 0.3
0 0.7

⎞
⎠ .

For this particular vectorisation of T and F vectorisation, GM of Equation 7 resembles
a ‘tiled’ version of MT

pre in a sense that the three different non-zero values of MT
pre are

represented in diagonal matrices of dimensions 2 × 2. These 2 × 2-tiles are arranged in the
same structure within GM as the corresponding values in MT

pre. Further investigations of the
structure of GM reveal that the tiles have the same number of rows as the pre concordance
Cpre.

The structure of GM changes if GM is developed for a post map. In this case, no tiles
appear in GM. Instead, the matrix MT

pre is replicated in a certain structure.
The authors considered constructing GM as a complete matrix, but the following two

reasons prevented this.

(1) Size of GM. The vectorised version τ of Eora is a vector containing 109 values. The
vectorised version of an MRIO in the final classification is even bigger, containing
approx. 1.2 × 109 values. Therefore, the matrix MEora has approx. 109 columns, and
a complete GM would have the dimensions 109 × (1.2 × 109). If GM was to be con-
structed, it would be saved in sparse format. But a priori estimations of the number of
non-zero elements revealed that GM would contain approx. 5 × 1010 elements. This
would require too much RAM for storing the matrix, let alone executing the operation
given in Equation 2.

(2) Structure of GM. A general formula to construct GM from the pre- and post concor-
dances CEora

pre and CEora
post is impossible since the structure of GM depends on the chosen

vectorisation. AISHA uses different ways of vectorising the MRIO depending on what
mode AISHA is running in. Hence, a unique formula for constructing GM does not
exist.

Therefore, the concepts described in this section to convert Eora’s constraint matrix in
Eora classification into an Eora constraints matrix in the final classification were applied
individually to each element of the constraints matrix M.

2.4.3. Standard Deviations for the IE and Constraints’ Sets

AISHA is able to consider the reliability of the input data during the reconciliation.
Whereas the standard deviation data for the Eora IE and constraints data set are already
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368 A. GESCHKE et al.

estimated in the Eora database, the standard deviations for all other data have to be
estimated.

The authors follow the general assumption that small values in a data set are less reli-
able than large values. Additionally, the constraints’ data are always considered more
reliable than the initial estimate data. For this project, the constraints’ data receive stan-
dard deviation values that are three times smaller than those of the IE data sets, making the
constraints’ data three times more reliable in the reconciliation process. This is in general
the same strategy that was chosen during the construction of the Eora database.

For more information on the estimation of data reliability for MRIO input data, refer to
Lenzen et al. (2010b) and Wiedmann et al. (2010).

2.5. Data Preparation and Reconciliation

The calculations were carried out on two computers. The main computer featured 12
3.4 GHz Intel cores, 296 GB of fully shared RAM and 8TB of hard disc space. The second
computer featured 8 2.4 GHz Intel cores with a total of 192 GB of fully shared RAM and
8TB of hard disc space. Both machines were fully utilised during this project. A total of
approx. 5 TB of data were produced.

2.5.1. Converting Eora’s Constraints Set into Final Classification

This was computationally the most resource- and time-demanding step in this study. As
mentioned in Section 2.4.2, the matrix of GM was not explicitly calculated. Instead, the
process of converting the constraints matrix into the final classification was carried out
individually for each non-zero coefficient in the constraints matrix.

The algorithm performing this element-wise conversion was programmed in parallel and
executed on the smaller of the two computers. Using seven of the eight available cores and
approx. 160 GB of RAM, the total runtime for the conversion of MEora into EXIOBASE
v2.0 classification was approx. 80 h.

2.5.2. Database Reconciliation

Since all reconciliation tasks were carried out in the final classification, most of the indi-
vidual parts of the input data for the reconciliation were identical in size (such as the IE,
the boundary vectors or the standard deviation data sets for the IE), regardless of which
database was to be reconciled. Only the constraints matrix M and the right-hand side vec-
tor c differ in size for the Eora constraints data set and the EXIOBASE v2.0 constraints
data set, respectively.

The Eora constraints data set featured approx. 2,462,000 constraints and 5 × 109 non-
zero elements in M. The total amount of input data for the reconciliation algorithm when
using the Eora constraints data set was approx. 100 GB. The EXIOBASE v2.0 constraints
matrix had less constraints – approx. 907,000 – but more non-zero elements in M: approx.
2 × 1010. The reason for the high number of non-zero coefficients was the extensive use
of ratio constraints, which need far more coefficients per constraint than point constraints.
The total amount of input data for the reconciliation algorithm when using the EXIOBASE
v2.0 constraints data set was more than 400 GB.

All reconciliation tasks were executed using a parallelised version of the KRAS
algorithm (see Lenzen et al., 2010a for more information on KRAS). The run-time for
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 369

each reconciliation on the larger computer with full utilisation of all available cores was
approx. 24 h.

3. RESULTS

3.1. Convergence of the Reconciliation Problems

The mixing of the three different construction components results in feasible recon-
ciliation problems in every case. A feasible problem is characterised by the fact that
the reconciliation method can find a solution that considers all given constraints. If the

FIGURE 1. Convergence plot for the database XCE.

Notes: These two plots display the absolute (‖Mτ − c‖, left) and relative (‖Mτ − c‖/‖c‖, right)
constraints adherence for the first 10 iterations of the reconciliation algorithm. Small adherences
mean that the constraints data c are well realised by the MRIO table τ . The x-axis (horizontal)
shows the order of magnitude of the constraints adherence, the z-axis (vertical) shows the order of
magnitude of the number of constraints that have the violation indicated on the x-axis, and finally,
the y-axis shows the iteration number. The better the constraints are adhered to, the steeper the curve
is (for each iteration), and the further to the right-hand side it is located . Both plots clearly show
convergence, since the surface is steeper and further to the right as the iteration numbers increase.
The slight increase in the number of constraints with a constraint adherence between 0 and 0.5 in
the log-scale for iterations 9 and 10 is misleading. While the number of constraints showing small
adherences increases, the residual (not shown in this plot) continues to decrease, and the algorithm
keeps converging.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 0
5:

20
 0

9 
O

ct
ob

er
 2

01
7 



370 A. GESCHKE et al.

constraints data set contains a large number of conflicting constraints, this is not possible.
In this case the reconciliation problem would be infeasible and the final database would
violate some of the given constraints significantly. KRAS was designed to achieve con-
vergence during the reconciliation process if even conflicting constraints are present in the
constraints set. In order to achieve this, KRAS considers reliability information given for
the right-hand side values of the constraints’ equations. Based on the reliability of each
constraint, KRAS finds the ‘best compromise’ for conflicting constraints. See Lenzen et al.
(2010a) for more information on KRAS.

Using KRAS for the reconciliation, convergence was achieved for all databases that
were constructed in this project (Figure 1).

3.2. Analysis and Comparison of the Different Databases

The results were analysed in two different ways:

(1) Each database is visualised in a heat map plot to verify that the overall structure does
not contain any unexpected values (such as extremely large values in trade blocks or
negative values in the intermediate demand block of the basic price sheet). Figure 2
shows the heat map of the basic price sheet of the intermediate transaction block for the
database GCE. The heat map shows that the basic price sheet has a normal structure:
The blocks on the main diagonal refer to the supply tables, which show, in general,
higher values than other blocks in the sheet. Some regions show a higher import/export
activity, indicated by strips of more prominent blocks in vertical and horizontal direc-
tions. There are no red dots in the plot, indicating that all values in the basic price sheet
are non-negative (as expected).

(2) All possible pairings of the models listed in Table 1 are compared. Different mea-
sures for the comparison of input–output matrices have been discussed in the literature
for well over 20 years (Harrigan et al., 1980; Knudsen and Fotheringham, 1986;
Günlük-Şenesen and Bates, 1988; Gallego and Lenzen, 2006). Following these recom-
mendations and analyses, we chose four different measures to evaluate actual metric
distances between matrices, the ‘goodness of fit’ or correspondence between the entries
of two matrices, and the correlation between the compared matrices. Suppose A and B
are two matrices of equal size n × m. The norms used for the comparison are:

Name Abbreviation Formula

Mean absolute difference MAD

∑
ij(|aij − bij|)

nm

Euclidean metric distance EMD

∑
ij

√
(aij − bij)2

nm

Regression coefficients 1 − R2 SSE

SST
(see footnote 6)

Pearson’s correlation coefficient 1 − CORR 1 − cov(A, B)

σAσB
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 371

FIGURE 2. Heatmap of the intermediate demand block of database GCE.

Notes: The intermediate demand block has the dimensions 17, 424 × 17, 424, each value within this
block is displayed as a pixel. The colour of the pixel depicts the order of magnitude of the absolute
value of the corresponding value in the database. This plot displays the basic price intermediate
demand block of the database GCE.

The matrix distance measures are applied to three different blocks of the basic price
sheet: the intermediate demand block, the final demand block and the value-added
block.

The original EXIOBASE v1.0 was included in these analyses. Note that, unlike all
other databases considered in this project, EXIOBASE v1.0 was compiled for the year
2000 and not for the 2007.

Note that the regression coefficient and correlation coefficient are subtracted from 1
to match the concepts of MAD and EMD of displaying smaller values the more the
investigated matrices are alike.

The results of the different metrics are displayed in Tables 2–5.
MAD and EMD provide measures of the distance between two different databases. As

MAD is based on the 1-norm and EMD is based on the Euclidean norm, values for MAD
are always larger than or equal to those for EMD.

6 The term SSE denotes the summed square of residuals. The residual is the difference between two correspond-
ing values in each of the compared databases. The term SST denotes the total sum of squares.
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TABLE 2. Euclidean metric distance for the intermediate demand table in million Euros.

GEE XEE ECE GCE XCE EEE CCC

XXX 0.19 0.009 0.01 2.25 0.049 0.008 0.007
CCC 0.197 0.011 0.009 2.29 0.05 0.007
EEE 0.198 0.011 0.006 2.29 0.05
XCE 0.203 0.049 0.046 2.24
GCE 2.28 2.29 2.29
ECE 0.199 0.010
XEE 0.199

Notes: The database pairs XXX/CCC, XXX/EEE, and CCC/EEE feature the lowest EMDs. For all
pairings that do not include the databases which were based on the A&P-approach IE (GCE and GEE),
the corresponding pairing shows a low value for EMD. Database pairings featuring the GCE or GEE
databases have significantly larger values.

TABLE 3. Mean absolute difference for the intermediate demand table in million Euros.

GEE XEE ECE GCE XCE EEE CCC

XXX 6.93 0.232 0.322 10.55 0.190 0.352 0.309
CCC 6.92 0.429 0.331 10.53 0.434 0.320
EEE 6.96 0.446 0.119 10.55 0.454
XCE 6.94 0.267 0.384 10.47
GCE 9.76 10.61 10.57
ECE 6.96 0.387
XEE 6.91

Notes: Similar to the results in Table 2, the MAD values are also the lowest for database pairings that do
not include the GCE or GEE databases, and the highest for database pairings featuring the GCE or GEE
databases.

But neither of these two measures can provide information about the goodness of fit or
correlation between the two matrices.

The regression coefficient 1 − R2 provides a measure for the goodness of fit or corre-
spondence between the values of two matrices. R2 can only take values between 0 and
1. Generally speaking, the closer R2 is to 1 (and the closer 1 − R2 is to 0, respectively),
the better the entries of one matrix fit the entries of the other one. However, Knudsen
and Fotheringham (1986) discuss that in some cases R2 can yield relatively high val-
ues despite the fact that two matrices may differ substantially. Hence, the regression
coefficient must always be interpreted together with the EMD/MAD results to assess
the differences between two matrices accurately. Pearson’s correlation coefficient gives
information on the degree to which two different matrices are linearly correlated. In our
case, the smaller the value 1 − CORR is, the higher the degree of correlation. Theoret-
ically, the value of CORR can also become negative, resulting in values larger than 1
for 1 − CORR. This would indicate that the corresponding databases are negatively lin-
early correlated. This behaviour has not been observed in any combination of databases
and would indicate that at least one of the databases contains significant errors. Similar
to EMD/MAD and 1 − R2, the correlation coefficient cannot stand by itself as an accu-
rate measure for the comparison of two matrices. Consider the vectors a = [1, 2, 3, 4, 5]T
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TABLE 4. Regression coefficients 1 − R2 for the intermediate demand table.

GEE XEE ECE GCE XCE EEE CCC

XXX 0.064 0.597 0.525 0.002 0.048 0.676 0.779
CCC 0.103 0.443 0.618 0.004 0.030 0.786
EEE 0.074 0.369 0.800 0.003 0.026
XCE 0.010 0.061 0.262 0.921
GCE 0.013 0.003 0.186
ECE 0.067 0.285
XEE 0.098

Notes: The largest values for the regression coefficient belong to those database pairings that were
amongst those with the smallest values for EMD and MAD: XXX/CCC, XXX/EEE, and EEE/CCC.
All of these model pairings were constructed according to different constraints’ sets. For other pair-
ings, databases with identical constraints’ sets often yield small values for 1 − R2 (such as CCC/XCE,
GCE/ECE, or EEE/GEE).

TABLE 5. Correlation coefficients 1 − CORR for the intermediate demand table.

GEE XEE ECE GCE XCE EEE CCC

XXX 0.746 0.227 0.274 0.949 0.779 0.177 0.116
CCC 0.679 0.334 0.213 0.935 0.826 0.113
EEE 0.727 0.397 0.105 0.941 0.838
XCE 0.899 0.751 0.487 0.039
GCE 0.883 0.943 0.568
ECE 0.740 0.456
XEE 0.686

Notes: The three pairings of those databases that were not constructed in this project (XXX/EEE,
CCC/EEE, and XXX/CCC) have much smaller values (i.e. higher correlation) than most other pairings.

and b = [1, 000, 1, 001, 1, 002, 1, 004, 1, 005]T. Then the correlation between these two
vectors equals 1 (i.e. total correlation), despite the fact that a and b differ substantially.

The tables for the final demand and value-added blocks are given in Appendix 1.

3.3. Discussion

Tables 2 and 3 show that the smallest values for MAD and EMD are achieved if both
databases are based on similar IEs. The database pairing CCC/XXX, where both databases
were constructed according to the same methodology, displays among the smallest values
for MAD and EMD. For the models XXX, CCC and EEE, a lot of effort was put into
the construction of the IE. The result of these efforts is that all three IEs already provide
a good approximation of the final MRIO. Hence, the final MRIO is probably relatively
close to the IEs. This is reflected by small values for MAD and EMD between all database
combinations for which both databases are based on the EXIOBASE v1.0, EXIOBASE
v2.0 or Eora IE. This indicates that neither of these IEs had to be adjusted substantially
during the reconciliation process, regardless of which constraints data set or reconciliation
method was used.
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374 A. GESCHKE et al.

The A&P-approach IE (G) that was constructed as part of this study did not undergo
such a detailed data mining and construction process. Tables 2 and 3 clearly show that
those databases that were based on the A&P-approach IE are not comparable to the other
databases. Depending on the distance measure that is applied, the differences in the val-
ues for MAD and EMD are around two orders of magnitude larger when compared with
databases that use the EXIOBASE v1.0, EXIOBASE v2.0, or Eora IE. Additionally, the
comparison of the databases GCE and GEE shows that although both of these databases
are based on the same IE, the values for EMD and MAD for this pairing are still much
larger than other for database combinations. This indicates that during the reconciliation
process, the imposed constraints cause the reconciliation engine to calculate a result which
has departed significantly from the initial data set. Both the Eora and the EXIOBASE
v2.0 constraints’ data sets were constructed with great effort, and it is obvious that the
constraints’ sets contain information that conflict significantly with the low-effort IE ‘G’.
These conflicts are much smaller when the Eora-, EXIOBASE v2.0- or EXIOBASE v1.0
IE is used. Hence, the construction of a meaningful IE has a significant effect on the final
model.

The performance of the Eora-style reconciliation process compared with the
EXIOBASE v2.0- and/or EXIOBASE v1.0 reconciliation process cannot be directly
assessed. Due to the nature of the EXIOBASE v2.0 construction process (which does not
require a fully populated IE), it was impossible to compare the Eora construction method
and the EXIOBASE v2.0 construction method for two identical IE and subject to the same
constraints data set. A ‘CCE’-model could not be constructed during this study because
EXIOBASE v2.0 was constructed in a multi-stage process that is not based on a fully con-
structed IE. Hence, a EXIOBASE v2.0 IE data set was not available. The A&P-approach,
which was used to construct a fully populated IE based on EXIOBASE v2.0 raw data, is
similar to the approach that is used to construct the IE in EXIOBASE’s original multi-stage.
Analysis of the databases that were constructed based on this IE (GCE and GEE) shows
that reconciling this IE according to the subject to the Eora or EXIOBASE v2.0 data set
yields significant differences in the resulting databases. Both the EMD and the MAD val-
ues for the pairing GCE/GEE are amongst the highest. In fact, every pairing that features
the GCE or GEE databases has significantly higher values for EMD and MAD than every
other pairing. Initially, it is unclear if these discrepancies are due to the IE or constraints’
data sets, or the construction methods of the individual databases. An indirect comparison
of the different construction methods of Eora and EXIOBASE v2.0 shows the following:
the database pairing XXX/CCC shows similar values for EMD and MAD as the combina-
tions EEE/CCC and EEE/XXX do for these metrics. Both Eora’s IE and EXIOBASE v1.0
data sets (used as an IE in this study) are reconciled with AISHA according to the Eora con-
straints set (databases EEE and XEE) and the EXIOBASE v2.0 constraints set (databases
ECE and XCE). Comparing these databases with the original EXIOBASE v2.0 model
(combinations XCE/CCC and ECE/CCC, as well as XEE/CCC and EEE/CCC) reveals
that the reconciliation behaves in similar ways on both initial data sets, independent of the
constraints data set that was chosen. Hence, AISHA’s performance is comparable when
applied to different data sets.

Table 4 reveals that if a small Euclidean norm is calculated for a pairing of two databases,
this does not necessarily imply that the corresponding regression coefficient 1 − R2 is small
as well. The database pairings CCC/XXX, EEE/CCC and XXX/EEE have amongst the
highest values for 1 − R2, despite having low values for MAD and EMD. Two of the
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 375

databases that were reconciled using the EXIOBASE v2.0 constraints data set (GCE, and
XCE) show a small value for 1 − R2 when compared with the original EXIOBASE v2.0
database CCC. The same holds for the databases that were reconciled using the Eora con-
straints data set (XEE and GEE) when compared with the original Eora data set EEE. This
indicates that if two databases are reconciled subject to the same constraints data set, the
pairing of these two databases tends to have a lower value for 1 − R2. Also, this observa-
tion is independent of the reconciliation method that was used. However, the impact of the
constraints data set on 1 − R2 is not as obvious as the impact of the IE on MAD and EMD.

Finally, the analysis of the correlation coefficients (Table 5) shows that the three original
databases (XXX, EEE and CCC) are highly correlated to one another. For the databases that
were calculated during this study, the higher the correlation, the more the three construction
components are alike. For example, the discussion of Tables 2 and 3 already showed that
the comparison of databases based on the ‘G’ IE with databases that are based on different
IEs (E, C or X) yields very large values for both MAD and EMD. The same pair-wise com-
binations of databases show poor correlation in Table 5. An example of a high correlation
is the database combination XEE/EEE. This combination shows small matrix distances for
both norms, and relatively good goodness of fit in Table 4. The database pairing XEE/EEE
also shows a relatively high correlation.

4. CONCLUSIONS AND OUTLOOK

In this study we compared different approaches for harmonising global MRIO databases,
notably the multi-stage process of the EXIOBASE v1.0 and EXIOBASE v2.0 MRIO
databases, and the single automated reconciliation step of the Eora database. In a num-
ber of numerical experiments we investigated the suitability of the software suite AISHA,
initially developed for the construction of Eora, for processing the EXIOBASE v2.0 and
EXIOBASE v1.0 data sets. These experiments allowed us to examine the effects of the
different construction methods and input data sets on the final MRIO databases. Tables 2
and 3 give a clear indication that a well-constructed IE has a significant impact on the qual-
ity of the final MRIO database. Since AISHA requires a fully constructed IE for only one
year of a time series (the so-called base year), the researcher must carefully choose a year
for the IE in which enough meaningful data are available to support the construction of an
IE. During the construction of the Eora database, the year 2000 was identified as the most
suitable year for the IE, and data from a large number of sources were used to construct
Eora IE for the year 2000 (see Lenzen et al., 2012 for details).

The impact of the constraints data is less obvious at first. This is due to a number of
reasons.

Firstly, any impact that the constraints data set has on MAD or EMD would have been
overshadowed by the far more dominant impact of the IE. The other metrics that were used
– the regression coefficient and Pearson’s correlation coefficient – can provide misleading
results. Knudsen and Fotheringham (1986) describe cases for which the regression coeffi-
cient does not accurately reflect the ‘goodness of fit’ of two compared data sets. Numerical
tests during this study showed that Pearson’s correlation coefficient can react quite sensi-
tively to outliers. Hence, the regression coefficient and the correlation coefficient reflect
phenomena in the MRIOs that are not only caused by data given in the constraints’ data
sets. However, the results indicate that the use of a certain constraints data set is reflected
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in the regression coefficient. This supports previous research results. For example, Lenzen
et al. (2006) found that using a large number of accurate constraints addressing the majority
of MRIO elements ensures good results during the reconciliation process. Finally, the com-
parison of the correlation between the databases shows that higher the correlation achieved
between two databases, the more both underlying data sets – the IE and the constraints data
set – are alike.

We conclude that if the IE and constraints data set are both well constructed, AISHA can
construct MRIO databases that match the quality of databases that were constructed
according to different strategies, such as EXIOBASE v1.0 and EXIOBASE v2.0.

The good convergence behaviour together with the analyses of the final MRIO databases
means that it is viable to produce a future time series of the EXIOBASE v2.0 MRIO
database using Eora’s automated reconciliation method. It is however necessary to con-
struct a fully populated IE for the first year of the time series. The construction of the
IE is not automated within the AISHA tool. Therefore, the benefits of AISHA’s highly
automated construction workflow can only be utilised once a (potentially labour-intensive)
construction of a suitable IE has been completed.

Large-scale MRIO tables are essential for on-going assessment of environmental
impacts on a global scale. In order to fulfil the requirements of such applications in the
future, global MRIO tables must ideally become less expensive to compile, more fre-
quently published with more timely data, and more accurate and comprehensive. Existing
databases often face the obstacle of high production costs, infrequent publication inter-
vals and/or they produce inaccurate results. Ideally, one would borrow the best attributes
from different MRIO initiatives. In this study we showed that mixing construction com-
ponents of different MRIO databases results in MRIO databases of comparable quality to
the original ones. More importantly, we have shown that a highly automated workflow in
the production process is able to approximate MRIO databases that were constructed in
more labour-intensive processes. Further research has to be undertaken in order to assess
to what degree an automated construction process can replicate the processes used for more
labour-intensive MRIO databases, and how elements of other construction processes can
be integrated into AISHA in order to assist this.
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APPENDIX 1. THE EXIOBASE DATABASE IN SHORT

EXIOBASE is a Multi-Regional EE SUT based on the based on the input–output
framework described in the well-established System of National Accounts, and includes
environmental extensions already consistent with the SEEA. EXIOBASE comes in two
versions:

• EXIOBASE 1.0. EXIOBASE v1.0 provides trade linked supply use tables for 43 coun-
tries and a rest of world, with a resolution of 129 sectors and products and a large number
of environmental extensions. EXIOBASE v1.0 is available for the year 2000.

• EXIOBASE 2.0. EXIOBASE v2.0 provides trade linked supply use tables for 43
countries and five rest of world regions. EXIOBASE v2.0 is available for the year 2007.

EXIOBASE is constructed in the following steps:

(1) Creating harmonised EE SUT for individual countries. From available country SUT
or IOT first SUT in basic prices and valuation layers are constructed, with a Use table
split into a domestic and import part. This SUT is subsequently detailed with auxiliary
data to the 129 sector and product resolution. Resource uses available from the SERI
database (in turn based on sources such as FAO, USGS and others) and water and land
use are allocated to the right sectors. Activity variables (IEA energy uses and other)
are allocated to the right sectors, and using emission factors from various sources,
consolidated in TNO’s TEAM model, are used to estimate emissions by sector.

(2) Transforming the MR EE SUT into an industry by industry and a product by product
MR EE IOT.

The result is in essence the following data sets: a set of harmonised EE SUT for individ-
ual countries, a global MR EE SUT, and two types (industry by industry and product by
product) of global MR EE IOT. For more information, refer to Tukker et al. (2013a) and
Tukker (2013).

APPENDIX 2. THE EORA DATABASE IN SHORT

Eora is an MRIO framework featuring 187 individual countries. Eora provides fully trade-
linked tables for the years 1990–2011, and features five valuations. Unlike the EXIOBASE
data sets, Eora features a heterogeneous classification and features IIOTs, CIOT, and SUTs.
During the construction of Eora, emphasis was placed on representing each country in its
native classification, which led to its heterogeneous table structure. During the construction
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of Eora, a large variety of data sources were considered. These included data published by
each national statistical agencies, UN official country data, UN Comtrade data, Eurostat
data and data from other sources.

The construction of the Eora can be summarised in the following methodology.

(1) Choose a base-year (for Eora, this is the year 2000), assemble an IE from all available
source. Use all remaining source data to construct the constraints matrix, then reconcile
the database according the reconciliation problem given in Equation 1.

(2) Loop forward: For the following year, construct the constraints matrix from the avail-
able source data, use the final result of the previous year as IE, and reconcile the
database using Equation 1.

This methodology is also used for the years prior to the base year 2000 by looping
backwards. For more information, refer to Lenzen et al. (2012, 2013) and Moran (2013).

APPENDIX 3. METHODOLOGY FOR DATA RECONCILIATION

The harmonisation of the different MRIO data sets will be conducted using the AISHA tool
(Geschke et al., 2011) which was developed by the University of Sydney. Within AISHA,
the entire MRIO tables is reconciled according to previously defined constraints. The
mathematical background of this concept is explained in this section. Let

T =
⎛
⎝t11 t12 t13

t21 t22 t23

t31 t32 t33

⎞
⎠ . (A1)

Perhaps the most important constraints on MRIOs are the so-called balancing constraints.
For the MRIO table T introduced in Equation A1 the balancing constraints are given
(assuming that net taxes on products being included in value added) by a set of equations

t11 + t12 + t13 = t11 + t21 + t31,

t21 + t22 + t23 = t12 + t22 + t32,

t31 + t32 + t33 = t13 + t23 + t33,

which is equivalent to

t11 + t12 + t13 − (t11 + t21 + t31) = 0

t21 + t22 + t23 − (t12 + t22 + t32) = 0

t31 + t32 + t33 − (t13 + t23 + t33) = 0.

Since each of the diagonal elements tii for i = 1, 2, 3 appears twice with alternating signs
in the corresponding equation, these equations simplify to

t12 + t13 − t21 − t31 = 0,

t21 + t23 − t12 − t32 = 0,

t31 + t32 − t13 − t23 = 0.

(A2)
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Equation A2 are the mathematical representation of the condition that the sums of elements
in the ith column must equal the sums over the elements of the ith row.

Similarly, other requirements can be expressed using the same notation. IO tables also
have the condition that the sum of each column in the margins matrices (valuations 2 and
3 in our example) must equal 0. The resulting constraint equation is

t1i + t2i + t3i = 0 ∀ i, (A3)

where i denotes the column (destination) index in the margins tables.
In balancing constraints, the right-hand side values of the constraint equations (e.g.

Equations A2 and A3) are 0. Other constraints might have different right-hand side values.
In many examples of IO table estimation, information is available on the gross output of
sectors (Deming and Stephan, 1940; Stephan, 1942; Friedlander, 1961; Bacharach, 1965;
Tohmo, 2004; Gallego and Lenzen, 2006; Kronenberg, 2009). Suppose the gross output for
sector Primary, manufacturing, and utilities is given by a monetary value c1, then the cor-
responding constraint equation (sum over all elements of sector Primary, manufacturing,
and utilities equals c1) is

t11 + t12 + t13 = c1. (A4)

The vectorisation of T becomes necessary in order to represent the Equations A2 and A4
in a matrix-by-vector notation. Assume the following vectorisation τ of the table T

τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11

t12

t13

t21

t22

t23

t31

t32

t33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

This vecorisation sorts the elements of T row-wise underneath one another. Using this
vectorisation, the balancing constraints given in Equations A2 can be expressed in the
following matrix-by-vector notation.

⎛
⎝0 1 1 −1 0 0 −1 0 0

0 −1 0 1 0 1 0 −1 0
0 0 −1 0 0 −1 1 1 0

⎞
⎠

︸ ︷︷ ︸
=M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11

t12

t13

t21

t22

t23

t31

t32

t33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
τ

=
⎛
⎝0

0
0

⎞
⎠

︸︷︷ ︸
=c

. (A6)

This format already has the desired form of Mτ = c. Additional constraints, for example
those given in Equation A4, would simply be added to this set of equations by adding
additional lines to the matrix M and the vector c.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 0
5:

20
 0

9 
O

ct
ob

er
 2

01
7 
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Another important class of constraints is ratio constraints, which considers known ratios
amongst table elements. For example, Andrew et al. (2010) applied ratio constraints during
the estimation of an MRIO table centred on New Zealand (R. Andrew, personal communi-
cation, April 2011). More specifically, he imposed that the production structure of sectors
in a table T to be constructed, should not deviate from the production structure in a known
table T∗. Assume the production structure of an economy is represented by a transaction
table T, the diagonalised gross output vector as v̂. Then the mathematical formulation of
this concept is given by

A = Tv̂−1. (A7)

The elements aij are interpreted as the amount of input that sector j requires from sector i
per unit of j’s gross output.

Virtually every constraint considered within this document is a combination of the
basic constraints examples presented in this section. Combining these basic structures can
result in constraints of almost arbitrary complexity, especially for large MRIO tables, and
examples can be found throughout this document.

Finally, MRIO tables may also be subject to boundary constraints. Unlike the constraints
discussed so far (which were all equality constraints), boundary constraints are inequality
constraints that define a lower or upper boundary for elements of the MRIO tables. The
most common boundary constraints in MRIO tables are restrictions on certain parts of the
different valuation sheets. For example, basic-price intermediate demand should only have
positive values. A subsidies sheets (our example’s sheet 5) must only have non-positive
values. Finally, changes in inventories are a component of final demand, that do not have
any boundary restrictions because sectors in an economy can in subsequent years either
add to, or draw from stocks, resulting in positive or negative changes in inventories.

Hence, for each element tij of T there may be numbers lij and uij that define boundaries
for tij, i.e.

lij ≤ tij ≤ uij. (A8)

All the concepts that were motivated for constraints yield constraint equations that are
linear in the elements of the table. In order to express all constraints in a closed form, the
MRIO tables must be vectorised. Assume an MRIO table T and its vectorisation τ , then
every constraint can be expressed in the form

mTτ = c with m, τ ∈ R
I , c ∈ R. (A9)

The vector m contains the appropriate coefficients and the value c is the corresponding
right-hand side value of the constraint. Assume that the vectorised MRIO MRIOtable
τ is subject to K constraints. Then each constraint can be represented in the form of
Equation A9 with appropriate vectors mk and right-hand side values ck , k = 1, . . . , K.
More importantly, all K constraints can be summarised as

⎛
⎜⎜⎜⎝

mT
1

mT
2

...
mT

K

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=:M

τ =

⎛
⎜⎜⎜⎝

c1

c2
...

cK

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
=:c

.
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382 A. GESCHKE et al.

Hence all equality constraints can be elegantly written as

Mτ = c with M ∈ R
K×I , τ ∈ R

I , c ∈ R
K . (A10)

As mentioned before, boundary constraints may hold for each element of the vectorised
MRIO τ (as shown in Equation A8). Hence, for each element τ i of τ , there might
be a lower boundary li and an upper boundary ui. These boundary conditions can be
expressed as

li ≤ τ i ≤ ui.

The values li and ui can be summarised in vectors l and u, so that the boundary conditions
for the whole MRIO τ are given by

l ≤ τ ≤ u τ , l, u ∈ R
I
∞ with R∞ = R ∪ {∞, −∞}. (A11)

By using R∞ it is possible to include those values τ i into Equation A11 that are subject to
either only one boundary, or no boundaries at all.

Using this formulation of constraints and boundary conditions, the reconciliation task
can be formulated as a constrained optimisation problem.

The initial MRIO table T0 is usually subject to constraints summarised in the matrix
M and the right-hand side vector c. hat is subject to more than one constraint. In order to
reconcile the initial table T0, an optimisation algorithm has to be used to obtain an MRIO
table T that adheres to all constraints given by M while violating the initial table T0 as little
as possible. The violation of the initial table is measured by a so-called objective function.

Usually there are more elements in the MRIO table than there are constraints. Hence,
the unknowns outnumber the constraints, resulting in the system being underdetermined.
The system therefore exhibits too many degrees of freedom to yield a unique solution
analytically.

In order to approach this problem, one has to make assumptions about the unknown
elements in order to provide initial data for each value in the MRIO, yielding a generally
imbalanced initial estimate T0 for the MRIO table (Oosterhaven et al., 2008; Glen et al.,
2011; Bouwmeester and Oosterhaven, 2008).

Using T0, an optimisation problem to find an MRIO table T that fulfils all constraints (a
so-called feasible MRIO table) can be formulated as

min
τ

f (τ , τ 0) subject to Mτ = c,

where τ and τ 0 are the vectorised representations of T and T0. Often the problem is
augmented by introducing vectors of upper and lower boundaries l and u for τ .

min
τ

f (τ , τ 0) subject to Mτ = c, l ≤ τ ≤ u. (A12)

Assume further, that for value in the MRIO (in this case, this corresponds to each value
in the vector τ ) and for each of the values in the constraint vector c, there exists a value
for the standard deviation corresponding to the reliability to that particular value. Then
the standard deviation values for τ can be summarised in a vector στ , and the standard
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ALTERNATIVE APPROACHES TO HARMONISE MRIO DATA 383

deviation values for c can be summarised in a vector σ c. By including these vectors into
the reconciliation problem given in Equation A12, the problem becomes

min
τ

f (τ , τ 0, σ τ , σ c) subject to Mτ = c, l ≤ τ ≤ u.

This equation was already presented as Equation 1. Note that Equations A12 and 1 do not
specify the objective function f . In fact, the choice of a suitable and meaningful objective
function and a powerful optimisation method that can solve Equation 1, has been a major
topic in research over the last few decades. Bacharach (1970) presents the method which
has been the most successful one so far: the RAS method.

AISHA offers a number of optimisation routines to solve the reconciliation problem.
Generally, optimisation routines used for MRIO reconciliation are broadly divided into two
classes: RAS-type algorithms and constrained optimisation algorithm. These categories
are slightly misleading. RAS-type methods are in fact optimisation methods themselves.
Bacharach (1970) motivated the objective function for RAS. AISHA offers reconciliation
algorithms from both families. Hence, during this project both RAS-type and constrained
optimisation routines will be used.

APPENDIX 4. RESULTS FOR FINAL DEMAND- AND VALUE-ADDED BLOCKS

TABLE A1. Euclidean metric distance for the final demand block in million Euros.

GEE XEE ECE GCE XCE EEE CCC

XXX 6.81 0.859 1.06 6.85 0.891 1.34 1.19
CCC 6.77 0.913 0.564 6.57 0.956 0.663
EEE 6.82 1.13 0.573 6.66 1.15
XCE 6.76 0.632 0.767 6.67
GCE 8.95 6.86 6.68
ECE 6.76 0.679
XEE 6.74

TABLE A2. Mean absolute difference for the final demand block in million Euros.

GEE XEE ECE GCE XCE EEE CCC

XXX 83.31 9.83 15.07 137.41 9.94 18.09 18.75
CCC 83.46 16.16 9.36 128.62 16.37 9.75
EEE 84.38 16.03 4.82 131.63 16.15
XCE 81.44 9.47 12.65 132.84
GCE 190.32 135.69 130.75
ECE 80.33 11.86
XEE 76.35
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384 A. GESCHKE et al.

TABLE A3. Regression coefficients for the final demand block.

GEE XEE ECE GCE XCE EEE CCC

XXX 0.000 0.218 0.020 0.009 0.191 0.025 0.022
CCC 0.001 0.003 0.583 0.169 0.049 0.637
EEE 0.000 0.002 0.880 0.070 0.043
XCE 0.000 0.073 0.054 0.133
GCE 0.018 0.004 0.133
ECE 0.000 0.002
XEE 0.001

TABLE A4. Correlation coefficients for the final demand block.

GEE XEE ECE GCE XCE EEE CCC

XXX 0.996 0.533 0.858 0.903 0.562 0.839 0.851
CCC 0.966 0.938 0.236 0.588 0.779 0.201
EEE 0.988 0.947 0.062 0.724 0.791
XCE 0.988 0.728 0.766 0.634
GCE 0.863 0.932 0.634
ECE 0.985 0.949
XEE 0.959

TABLE A5. Euclidean metric distance for the value-added block in million Euros.

GEE XEE ECE GCE XCE EEE CCC

XXX 14.75 3.89 8.27 7.101 3.58 12.45 11.40
CCC 18.30 11.99 6.40 13.19 11.78 7.52
EEE 18.25 12.61 6.39 12.97 12.20
XCE 13.56 3.31 8.19 3.85
GCE 13.06 5.61 9.59
ECE 16.02 8.48
XEE 13.88

TABLE A6. Mean absolute difference for the value-added block in million Euros.

GEE XEE ECE GCE XCE EEE CCC

XXX 323.00 94.59 188.13 119.37 52.14 270.45 239.17
CCC 446.80 277.56 181.51 269.90 244.96 246.74
EEE 459.54 287.37 141.89 268.26 253.32
XCE 277.24 73.34 179.15 71.32
GCE 222.07 96.48 200.72
ECE 391.34 209.77
XEE 268.47
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TABLE A7. Regression coefficients for the value-added block.

GEE XEE ECE GCE XCE EEE CCC

XXX 0.000 0.702 0.296 0.003 0.919 0.121 0.261
CCC 0.001 0.183 0.795 0.035 0.259 0.698
EEE 0.000 0.079 0.777 0.003 0.118
XCE 0.001 0.670 0.293 0.005
GCE 0.007 0.005 0.007
ECE 0.001 0.231
XEE 0.004

TABLE A8. Correlation coefficients for the value-added block.

GEE XEE ECE GCE XCE EEE CCC

XXX 0.978 0.162 0.455 0.938 0.041 0.652 0.488
CCC 0.966 0.572 0.109 0.812 0.490 0.164
EEE 0.982 0.718 0.117 0.945 0.655
XCE 0.978 0.181 0.459 0.929
GCE 0.913 0.926 0.918
ECE 0.974 0.518
XEE 0.933
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