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Abstract 16 

Demand for food products, often from international trade, has brought agricultural land use into direct 17 

competition with biodiversity. Where these potential conflicts occur and which consumers are 18 

responsible is poorly understood. By combining conservation priority (CP) maps with agricultural trade 19 

data we estimate current potential conservation risk hotspots driven by 197 countries across 48 20 

agricultural products. Globally, a third of agricultural production occurs in sites of high conservation 21 

priority (CP>0.75, max=1.0). While cattle, maize, rice and soybean pose the greatest threat to very high 22 

conservation priority sites, other low conservation risk products (e.g., sugar beet, pearl millet and 23 

sunflower) currently are less likely to be grown in sites of agriculture-conservation conflict. Our analysis 24 

suggests that a commodity can cause dissimilar conservation threats in different production regions. 25 

Accordingly, some of the conservation risks posed by different countries depend on their demand and 26 

sourcing patterns of agricultural commodities. Our spatial analyses identify potential hotspots of 27 

competition between agriculture and high conservation value sites (i.e. 0.5° resolution, or ~367-28 

3,077km2, grid cells containing both agriculture and high-biodiversity priority habitat), thereby 29 
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providing additional information that could help prioritise conservation activities and safeguard 30 

biodiversity in individual countries and globally. A web-based GIS tool at 31 

https://agriculture.spatialfootprint.com/biodiversity/ systematically visualizes the results of our analyses.  32 

Keywords: conservation risk hotspots; agricultural trade; biodiversity footprint 33 

Significance Statement 34 

Despite efforts to promote sustainable agriculture, food and agricultural production remains the main 35 

driver of global biodiversity loss. However, where food production conflicts with biodiversity 36 

conservation and which products and countries contribute the most has not been as comprehensively and 37 

systematically assessed. Based on spatial models of farming activity and conservation priority, we 38 

estimate how production and consumption of 48 agricultural commodities driven by 197 countries may 39 

conflict with conservation priorities for 7,143 species. This study provides a quantitative basis to better 40 

understand and manage the large-scale transformative changes between humanity and nature through 41 

decisions concerning food consumption, production and trade. 42 

Main 43 

Conversion of terrestrial habitats to farmland is the primary driver of human-induced species loss1,2. 44 

Risks to ecosystems and biodiversity are imposed within and beyond country borders, through domestic 45 

production and imports of food, fibre and fuel in the developed world3–6. Reversing this trend requires a 46 

comprehensive understanding of where competition between biodiversity conservation and agriculture 47 

is likely to occur and which downstream consumers are responsible7. However, disentangling these 48 

linkages is difficult due to the lack of integration between agricultural, consumption and species risk 49 

data8. 50 

Conflicts between agriculture and biodiversity have been a focal subject of concern in environmental 51 

footprinting of consumption. Yet, compared to greenhouse gas emissions, water demand and land use, 52 

consumption impacts on biodiversity remains a nascent topic of analysis9. Current knowledge on the 53 
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drivers of biodiversity threats in agriculture stem from two lines of inquiry and modelling: (i) integration 54 

of species, ecosystem and habitat richness data into global macroeconomic databases, and (ii) detailed 55 

case studies of high-impact products or countries which employ supply chain data of high sectoral or 56 

spatial resolution. Lenzen and colleagues offer a remarkable study of country and sector biodiversity 57 

footprints by integrating information on nationally threatened species with a global supply chain 58 

database10. This provided a theoretical basis to examine how nations impose risks to biodiversity within 59 

and beyond their borders. Subsequent studies have employed a similar approach, making use of more 60 

detailed sectoral and biodiversity risk data to advance understanding of the products, species and 61 

geographies implicated in biodiversity footprints of countries. 62 

An early advancement in global biodiversity footprinting resulted from the use of global supply chain 63 

databases with a greater diversity of agricultural sectors to better distinguish drivers of biodiversity 64 

threats11. Physical, commodity-level agricultural trade data has further enriched the sectoral resolution 65 

of assessment to this end4,12–17. Characterisation factors of biodiversity risks driven by consumption have 66 

also advanced in several ways when compared to earlier, count-based biodiversity metrics. Noteworthy 67 

developments within this context include the calculation and use of fractional loss of species18, species 68 

vulnerability19–21, thresholds for species intactness21, and species-area relationships within biodiversity 69 

footprinting4,20,22–24. Whilst linkage of geospatial species occurrence information to global supply chain 70 

databases has offered the capability to construct spatially explicit maps of species threat hotspots driven 71 

by remote consumption activities3. However, global spatially-explicit biodiversity footprinting models 72 

do not currently capture the location and extent of agricultural production and its competition with 73 

species hotspots within countries, nor offer a detailed picture of the products responsible. 74 

Recent case studies have sought to integrate spatially-explicit agricultural production maps with 75 

species and ecosystem hotspot data. These include assessments of high-risk products (soy25, beef26, palm 76 

oil27, timber24,28), high-impact consumers (EU29, Switzerland28,30, US31,32), species hotspots (e.g. in 77 

South America26,33 and South East Asia12), and studies of broad land use categories11,34. Although 78 

instructive, we lack a systematic overview of the location, scale and drivers of biodiversity threats in 79 



4 

agricultural and livestock product supply chains. As a result, there remains a mismatch between the 80 

evidence base on consumption drivers of biodiversity loss and the local, product-level data needed by 81 

governments and industry to monitor, implement and further develop policy commitments to reverse 82 

this trend. To address this gap, we integrate conservation priority area sites based on modelling the 83 

distributions of 7,143 species, land use maps for 48 agricultural commodities, and trade data for 197 84 

countries, to capture how crop and animal products conflict with high-conservation priority areas and 85 

where these implicated commodities are produced and finally consumed. 86 

Results 87 

A conservation priority (CP) score for each grid cell in the model is calculated worldwide using the 88 

Zonation algorithm that produces a hierarchical ranking of conservation priority via a strategy of 89 

minimization of marginal loss35,36. The CP index ranges from 0 to 1, where a higher index means a 90 

greater degree of structural connectivity within a habitat for multiple species simultaneously. Areas with 91 

CP<0.5 are referred to as lower CP sites, sites with CP>0.5 are referred to as medium-high value, sites 92 

with CP>0.75 as high value, and sites with CP>0.9 as very high conservation priority. The potential 93 

conflict or risk between agricultural production and conservation is estimated by linking agricultural 94 

land-use area and CP values within a pixel unit (0.5 decimal degrees). We assume a higher degree of 95 

conflict is associated with (i) increased land-use share in a pixel and (ii) greater CP value of a pixel. 96 

While we acknowledge the uncertainty of our analysis (e.g., not accounting fully for differences in 97 

cultivation practices, habitat fragmentation, hunting pressures, and unmeasured land clearing for each 98 

commodity over time; see Supplementary Appendix 1 for a full discussion of limitations), this spatially 99 

explicit approach allows us to provide comparable, comprehensive and detailed assessment of 100 

agriculture-biodiversity footprints of many commodities and countries at a pixel level. 101 

Globally, over three-quarters of agricultural land use is estimated to occur in sites of medium-very 102 

high conservation priority (CP>0.5) and over a third exclusively in high CP sites (CP>0.75). Although 103 

23.4% of agricultural land use occurs in low CP sites, only 5 of 48 commodities modelled (barley, other 104 

cereals, sugar beet, sunflower and wheat) are primarily sourced (>50%) in these areas. These findings 105 



5 

imply potentially widespread conflict between agricultural land use and conservation of biodiversity37–
106 

39. However, such risk hotspots vary among commodities and production sources and so might be 107 

minimised by purchasing of low conservation risk products, which we identify using the high-resolution 108 

mapping of agricultural production, species distributions and their flows to consumers through global 109 

trade networks. The maps and data underlying this study are available online at 110 

https://agriculture.spatialfootprint.com/biodiversity/ and can also be found in the Supplementary 111 

Information. For production activity as shown in Figures 1 and 2, land use represents the actual area 112 

where a crop is grown or an animal is raised. To link biodiversity risks to final consumer in Figures 3 113 

and 4, land use of crop commodities does not include croplands used for livestock feed, and land use of 114 

livestock commodities is the sum of physical area for livestock raising (housing, exercise yards, pasture, 115 

etc.) and feed croplands. 116 

1.1. Risk hotspots between agricultural production and conservation 117 

The degree and location of potential risk hotspots between agricultural land use and high value 118 

ecosystems and biodiversity varies substantially among commodities, as shown in Figure 1a. Coffee, 119 

cocoa, plantain, and oil palm are produced almost exclusively in sites of very high CP (CP>0.9), but 120 

Table 1. Top 15 potential risk hotspots between conservation priority (CP > 0.9) and agricultural land use per commodity 121 

and country in 2010. 122 

Country Commodity Used area in high CP sites (km2) Share of production area in high CP sites (%) 

 Brazil   Cattle        113,902        33.7 

 Brazil   Soybean          99,977        44.1 

 Brazil   Maize          62,599        48.9 

 Brazil   Sugar cane          44,062        49.1 

 Australia   Wheat          42,008        32.1 

 Australia   Cattle          37,949        57.5 

 Colombia   Cattle          32,906        60.2 

 Viet Nam   Rice          22,623        63.1 

 Côte d'Ivoire   Cocoa          21,379        92.2 

 Malaysia   Oil palm          20,581        53.6 

 China   Cattle          19,871        10.0 

 Australia   Sheep          18,381        44.8 

 South Africa   Cattle          18,272        34.5 

 Indonesia   Oil palm          18,197        33.5 
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 Tanzania   Cattle          17,898        35.5 

 

Figure 1. Agricultural land use in conservation priority sites. a, Heatmap of land use proportions per conservation 

priority (CP) index interval for 48 analysed agricultural commodities in 2010. b, Distribution of regional land use (left) 

and global land use (right) in 2010 for major agricultural commodities by CP intervals. For each commodity, a pair of 

world regions (following the UN region groupings) is selected to highlight the difference in distributions of conservation 

priority embedded in land use. Regional land use is represented as a proportion of the total global production area. 

cattle, maize, rice, and soybean occupy the most abundant land use areas in those sites and pose the 123 

highest conservation risk of the commodities analysed. Other cash crops, produced mostly for export 124 

markets, such as coconut and sugar cane, are similarly risky. However, not all cash crops are linked to 125 
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biodiversity pressure; the relationship between crop export ratio and conservation risk varies widely 126 

across cultivation areas (Supplementary Figure 11). 127 

Our analysis also suggested key agricultural commodity sources which occupy significant land area 128 

in very high conservation priority areas (Table 1 and Supplementary Table 2). Brazilian cattle, soybean, 129 

maize and sugar cane are grown on the largest areas of land at potential conservation risk hotspots. Other 130 

conservation risk commodity sources included wheat, cattle and sheep in Australia, where humans and 131 

wild species often compete for water; cattle in Colombia, where pasture expansion for extensive grazing 132 

in the departments of Caquetá, Guaviare and Meta occurs within high conservation priority tropical 133 

moist broadleaf forests; palm oil in Indonesia and Malaysia, where many endemic species are threatened 134 

with extinction; and cocoa from Côte d'Ivoire, a country rich in biodiversity and the world’s largest 135 

exporter of cocoa for chocolate. These findings corroborate and expand insights from previous 136 

literature3,10,17,25,28,40. 137 

 

Figure. 2 Map of land use and conservation priority index for major agricultural commodities. Spatial distribution 

of land use for five major agricultural commodities coloured according to conservation priority (low=light, high=dark) 

index in 2010. For each pixel, the land use commodity with the greatest share of the five pre-selected commodities is 

shown. 

In contrast, sugar beet, pearl millet, sunflower, cotton and certain pulses, such as pigeon peas, lentils, 138 

chickpeas, and cowpeas, pose the lowest conservation risk (Figure 1a). Differences in conservation risk 139 

are also observed between agricultural commodities of the same commodity group (Figure 1a), such as 140 
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sugar cane (high risk) and sugar beet (low-medium risk); tropical fruit (high risk) and temperate fruit 141 

(medium risk); and, sweet potato (high risk) and potato (medium risk). We also find the same 142 

commodities can pose a different conservation threat depending on their production region (Figure 1b; 143 

Figure 2). For example, soybean and cattle production in Central and South America occurs in high CP 144 

areas (such as the state of Mato Grosso in Brazil, Chihuahua in Mexico and the Chaco region of 145 

Paraguay), but poses a lower conservation risk in North America and Africa (Figure 1b). Wheat grown 146 

in Eastern Europe has a lower biodiversity risk than wheat grown in Western Europe. For other 147 

commodities, such as maize, production occurs in low, medium and high CP areas within the same 148 

region, Asia and Pacific, preventing a simple distinction of production regions as low and high risk 149 

(Figure 1b). 150 

1.2. Conservation risks of national consumption 151 

Our measure of the conservation risk posed by national demand for agricultural commodities varies 152 

between countries based on consumption and sourcing patterns. Figure 3a highlights these differences 153 

for major centres of consumption. (Equivalent analysis for all 197 countries analysed can be found in 154 

Supplementary Figure 9.) China is responsible for the greatest agricultural land area (114,258 km2) in 155 

very high CP areas due primarily to its consumption of oil crops—mainly from outside the country 156 

(74%)—and livestock. In contrast, stimulant (coffee, cocoa, tobacco and tea) consumption in the USA 157 

and the EU-27 economic bloc is responsible for a greater share of their land use in very high conservation 158 

areas (Figure 3a). As a proportion of its overall land use, Japan has one of the highest dependencies 159 

(18.9% of total) on agricultural land use in areas of very high CP, mainly as a result of imports of cattle, 160 

stimulants, and rest of crops (e.g., rubber, tree nuts). While Japan consumes just 2.7% of Ghana’s cocoa, 161 

98% of cocoa in the country is grown on very high-CP sites. Although the EU-27’s land footprint within 162 

the EU region is mostly imposed in low-medium CP areas, its agricultural sourcing beyond the EU is 163 

far riskier (from 18.2% in low CP areas to 86.1% in very high CP areas) (Supplementary Figure 2). 164 

Conversely, India's land use in low CP areas constitutes just 1.3% of its overall footprint, and its  165 
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Figure 3. Country and regional profiles of agricultural commodity demand by conservation priority level in 2010. 

a, Land use area embodied in consumption of all agricultural commodities by CP levels in 2010. CP levels are classified 
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agricultural consumption is generally satisfied by domestic production. A noticeable feature of these 166 

country land use profiles is their sourcing of the same agricultural products from high, medium and low 167 

CP locations, highlighting opportunities for de-risking supply chains based on existing consumption 168 

patterns (Figure 3a). For example, Japan’s beef and cow’s milk consumption is significantly (25.3%) 169 

from very high CP areas but the same risk is not associated with beef consumption in the US, EU-27, 170 

and China. However, the scale and nature of risk hotspots between agricultural land use and conservation 171 

priority areas will also change as a result of climate-induced shifts in species distributions, demanding 172 

adaptive governance of such risks.  173 

Viewed within the context of economic development, high and upper middle income countries are 174 

found to bear primary responsibility (60%) for land use in high-very high CP sites based on the scale 175 

and patterns of their consumption (Figure 3b). In addition to the impact of international trade, domestic 176 

consumption poses a significant threat to biodiversity conservation in the tropics, mainly by low and 177 

lower middle income countries. For certain high conservation risk products, such as cocoa and coffee, 178 

high income countries do not contribute to production (<0.2%) but are the major centres of consumption 179 

(>50%). After adjusting for population size, a large variation in the relative conservation risk of 180 

individual consumers in high, middle and low income countries is also evident (Figure 3c). For example, 181 

high-very high CP land use related to cattle consumption is nearly three times higher for consumers in 182 

upper middle income countries when compared with lower middle income countries and 1.7 times as 183 

large as consumers in high income countries, but for all income groups cattle consumption accounts for 184 

20-42% of total consumers’ high conservation risk land use (CP>0.75). Overall, the highest per capita 185 

land use in high-very high CP sites is found in low income and upper middle income countries, 186 

by four CP index ranges: VH (very high, 0.9-1.0), H (high, 0.75-0.9), M (medium, 0.5-0.75), and L (low, 0-0.5). EU27 

refers to the European Union (EU) excluding the United Kingdom because of its withdrawal in 2020. b,c, Overall land use 

(b) per capita land use (c) in high-very high CP sites (CP>0.75) linked to production and consumption of every agricultural 

commodity for four country groups, following World Bank country classifications by income level. Land use of crop 

commodities does not include croplands used for livestock feed. Land use of livestock commodities is the sum of physical 

area for livestock raising (housing, exercise yards, pasture, etc.) and feed croplands. 
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suggesting a complex and non-linear relationship between economic development, diet and food 187 

consumption impacts. While high income countries have 50% higher per capita land use in high-very 188 

high CP, when comparing their consumption and production footprints, other income groups have 189 

approximately the same level of such land use for production and consumption. 190 

National consumption of agricultural commodities is met by both domestic production and imports. 191 

As a result, nations impose risks to biodiversity within and beyond their borders. Since data availability 192 

limitations preclude our analysis from tracing the sub-national supply chain it is not possible to identify 193 

and link the exact land use in sub-national areas to national or remote consumption of agricultural 194 

products. However, by combining land use maps and the physical trade model, we can estimate the 195 

potential land use footprint at a pixel level using a consumption-weighted approach. For 124 countries, 196 

imported agricultural commodities posed a greater risk to areas of very high CP than domestic 197 

agricultural land use. As shown in Figure 4a, land use in very high CP areas (CP>0.9) driven by 198 

consumption in several major countries is mostly non-domestic and geographically concentrated in 199 

South-East Asia, West Africa and the Neotropics. However, the main production regions implicated in 200 

these trade-related biodiversity risks vary by country. Chinese consumers threaten species in the 201 

Brazilian highlands for cattle and soybeans; Malaysia for palm oil; Vietnam and Thailand for rubber, 202 

cassava and fruits; and the Southern part of Australia by importing barley, sheep meat and hides. 203 

Whereas risk hotspots in Western African very high CP areas are driven by European cocoa 204 

consumption. Whilst consumption across the EU-27 nations drive conservation risk hotspots in Vietnam, 205 

Brazil, Honduras, El Salvador, Guatemala and Peru for coffee; in Indonesia and Papua New Guinea for 206 

palm oil and coffee, and coconuts in the Philippines. US imports of agricultural commodities also risk 207 

hotspots with several very high CP areas: beef from Australia, Mexico, Nicaragua and New Zealand; 208 

coffee from Brazil, Colombia, Peru, Ecuador, Vietnam, Indonesia and Central America; rubber from 209 

Indonesia, Côte d'Ivoire, Thailand, Liberia, Brazil and Vietnam; cocoa from Western African, Indonesia, 210 

Ecuador and Brazil; and sheep in Australia (Figure 4b). For countries which are located in regions of 211 
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high CP, such as Brazil and Indonesia, their biodiversity footprint falls mostly domestically rather than 212 

abroad. Commonalities between the sources  213 

 214 
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Figure 4. Conservation risk hotspots embodied in traded agricultural commodities in 2010. a, Total land use associated 215 

with agricultural commodity trade from the highest conservation priority areas (CP>0.9) to the top five importing countries. 216 

Pixels are coloured by the land use percentage of the top importer in the entire pixel area (only where land use ratio of an 217 

importer ≥0.1%). b, Land use in the highest conservation priority areas (CP>0.9) linked to consumption of five major 218 

agricultural commodities in the United States. Pixels are coloured by the percentage of agricultural land use in the entire pixel 219 

area. c, Trade flows of high-very high CP’s land use (CP>0.75) embodied in international trade for cocoa in 2010. The 220 

countries selected on the map represent either top consumers or top producers. 221 

Table 2. Top 15 potential risk hotspots between conservation priority (CP > 0.9) and agricultural land use per commodity 222 

and trade flow in 2010. 223 

Producer Consumer Commodity 
Area in very high CP 

sites (km2) 

Area in very high CP sites, as fraction 

of total (%) 

 Australia   Japan   Cattle        11,071        47.9 

 Brazil   China   Cattle          8,771        42.0 

 Brazil   China   Soybean          6,988        40.5 

 Brazil   China   Pigs          5,451        42.3 

 Côte d'Ivoire   USA   Cocoa          5,446        92.2 

 Australia   Indonesia   Wheat          4,838        34.6 

 Australia   USA   Cattle          4,744        49.0 

 Brazil   Russia   Cattle          4,392        36.9 

 Brazil  Iran   Cattle          3,949        40.7 

 Australia   South Korea   Cattle          3,874        48.2 

 Brazil   USA   Coffee          3,791        83.0 

 Malaysia   China   Oil palm          3,357        53.4 

 Brazil   France   Cattle          2,771        42.0 

 Côte d'Ivoire   India   Rest of crops          2,418        80.2 

 Brazil   Germany   Coffee          2,387        83.0 

of conservation risk hotspots in national supply chains highlight the need for greater transboundary 224 

cooperation to monitor, regulate and incentivise (via certification, subsidies and pricing) biodiversity-225 

friendly forms of production for high risk agricultural commodities41. Conservation risk hotspots are 226 

associated with both domestic and export-bound production, underlining the need for mitigation efforts 227 

at both scales (Supplementary Figures 2 and 10). 228 
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We identify major commodity export flows driving conservation risk hotspots where interventions 229 

should be prioritised (Table 2). Australian beef exported to Japan, Brazilian beef, soybeans and pork 230 

exported to China, Ivorian cocoa exported to the US were responsible for the greatest land use in very 231 

high conservation priority areas. Overall, high-risk trade flows are dominated by traditional primary 232 

commodities: trade in cattle, palm oil, coffee, wheat and cocoa comprise 75 of the top 100 at-risk trade 233 

flows (Table 2); see Supplementary Table 3 for complete listing. Major trading partners implicated in 234 

such high-risk trade includes Malaysia and Indonesia which export palm oil to China and India (#12, 235 

#18), respectively, Brazil and Colombia which export coffee to the USA (#11, #24), and Brazil and 236 

Paraguay which export beef to Russia (#8, #45). We develop software to visualize trade flows of land 237 

use embodied in international trade for every analysed commodity, of which an example for cocoa is 238 

shown in Figure 4c.  239 

In the past decade, sustainable procurement policies have sought to reduce commodity sourcing from 240 

high conservation priority areas, via zero deforestation commitments, certified commodities and supply 241 

chain screening. While these zero deforestation policies are mainly focused on cattle, soybean and palm 242 

oil, our results suggest a need to cover other high-risk commodities, such as maize, sugarcane, coconut 243 

and rubber. Although effective in certain contexts, such as Brazil’s Amazon Soy Moratorium42, lax 244 

enforcement, loopholes and non-stringent environmental demands of such measures have failed to fully 245 

mitigate ecosystem and biodiversity risks in legally protected areas, and such areas seldom constitute 246 

the full range of conservation priority areas being threatened by agriculture43. As such, these areas were 247 

not excluded from our modelling. Equally, changes in the scale of global agri-food production and trade, 248 

has compounded risk hotspots in other areas (e.g., the growth in soy imports to China, cattle ranching in 249 

Brazil, and oil palm plantations in Southeast Asia). Accounting for the dynamic temporal shifts in risks 250 

to conservation priority areas requires further sharing of up-to-date economic and production data. 251 

Discussion 252 

Decisions made in relation to consumption, production and trade of agricultural products can help 253 

protect or further endanger ecosystems and biodiversity. By investigating the spatial overlap between 254 
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agricultural land use and species habitats it is possible to estimate how, where, and what products and 255 

countries threaten conservation priority areas44. The findings from this study indicate that consumption 256 

of certain key products, such as coffee, cocoa and palm oil, by a subset of countries drives land use in 257 

very high conservation priority areas. This corroborates prior research which also identified these crops 258 

as key biodiversity threats45. In this study we also identify lower conservation risk products, countries 259 

and regions which avoid such risk hotspots , which suggests that judicious import and export policies 260 

for food, fibre, and food goods can be one factor to help minimize species threats. 261 

The degree of spatial overlap can help identify potential conflicts between agricultural land use and 262 

species distributions at high resolution. While spatial colocation is only an approximate method for 263 

identifying potential conflict (see Supplementary Appendix 1), this approach offers several benefits over 264 

prevailing, national-level, count-based approaches to species risk assessment4,10,22,23. Spatially explicit 265 

assessment makes it possible to map geography and scale of species threats posed by agricultural 266 

production activity. This specificity can support a triage-base approach to conservation, helping to invest 267 

scarce regulatory and governance resources into protecting high conservation areas at greatest threat 268 

where they have not been effectively targeted to date1,46,47. The ability to distinguish where commodities 269 

are produced in areas of high or very high conservation priority can help companies define criteria and 270 

regions for screening their supply chains to avoid such potential conflicts. Such information is becoming 271 

increasingly needed in order for companies to meet sustainable procurement legislation, such as the 272 

French Loi de Vigilance, UK Environmental Bill, and recent decision of the European Union to mandate 273 

deforestation-free imports, as well as corporate sustainability initiatives, such as the Global Reporting 274 

Initiative, Roundtables for sustainable palm oil, beef and soy, and company-level biodiversity targets. 275 

Since localised species threats are often driven by economic activity beyond the territories in which they 276 

occur, cooperation and risk sharing between supply chain actors across agricultural supply chains (e.g., 277 

producers, processors, manufacturers, supermarkets, and consumers) is needed to moderate land use in 278 

high conservation areas. While zero-deforestation policies have succeeded in reducing deforestation, 279 
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transparent monitoring of the supply chain should be improved to ensure no further agricultural 280 

expansion into natural forests and avoid laundering and leakage40–42. 281 

Our spatial approach has several limitations. One limitation arises because selecting a larger (or 282 

smaller) grid cell size would lead to more (or less) seeming overlap between the farming and 283 

conservation priority layers, making our predicted area of 'potential conflict' be a scale-dependent 284 

approximation. Our approach does not consider other agriculture-biodiversity conflicts including habitat 285 

fragmentation, pollution, and resource and water use, and is limited by the current accuracy of both the 286 

MapSPAM spatial crop model and of data on international agricultural trade and the actual within-287 

country crop production locations of exported crops. While it is recognised that conservation and 288 

agriculture activities may coexist in certain pixels that this study cannot capture (see Supplementary 289 

Appendix 1 for more), the current resolution (0.5 decimal degrees) of CP maps enables us to update the 290 

maps easily over time and predict the potential conflicts under climate change scenarios (presented in 291 

Supplementary Appendix 5). 292 

Our findings highlight the need to consider (i) sourcing, (ii) substitution, (iii) sufficiency and (iv) 293 

transparency in order to minimise risk hotspots between agriculture and conservation. For commodities 294 

which can be cultivated in low CP sites, such as wheat, soybeans and maize, shifting sourcing from high 295 

to low conservation sites will be most effective (Figure 2). Practically, for regions that have a large, 296 

remote land footprint in high conservation priority areas, such as China, the US, India, Japan and the 297 

EU, domestic production and regional import of staple crops could help to mitigate conservation 298 

conflicts. Such a shift in sourcing could be a likely prospect owing to geopolitical and climate-related 299 

shocks stemming from remote sourcing of agricultural products of OECD countries. Geopolitically, the 300 

Covid-19 pandemic, war in Ukraine and conflicts in sub-Saharan Africa have exposed the instability of 301 

globally integrated food markets and the need for greater adaptiveness of local markets to respond to 302 

these shocks. Climate-induced yield shifts are predicted to result in lower agricultural productivity of 303 

staple crops in the Global South and moderate gains in the Global North48,49, indicating a potential for 304 

price competitiveness of staple food production in areas of low conservation priority. Yet, in the case of 305 
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China, declining domestic water availability has led to outsourcing of soybean production to Brazil, 306 

indicating a more complex relationship between environmental change and sourcing from high 307 

conservation priority areas50. Understanding the geographical ‘stickiness’ of agricultural supply chains 308 

is key to assess the scope and speed of changes to sourcing and other measures. Observations of soybean 309 

supply chains suggest stickier traders tend to pose higher deforestation risk by maintaining sourcing and 310 

signing zero-deforestation commitments which are less effective at curbing threats to habitats51,52. 311 

Hence, there is a necessary role for monitoring and regulation of corporate sustainability commitments. 312 

Moreover, land sparing and land sharing strategies must be explored within the context of sourcing to 313 

ensure restoration of habitats, ecosystems and biodiversity through conservation areas and agro-314 

ecological farming practices53. 315 

Where changes to sourcing are not feasible or only partially effective, substitution in the consumption 316 

and use of agricultural products which meet a similar nutritional and functional role is desirable, such as 317 

switching from livestock to pulses, sugar cane to sugar beet, and tropical to temperate fruit. However, if 318 

increased consumption of such products is not accompanied by significant ‘disadoption’ of high-impact 319 

products, the total biodiversity risk of food consumption may increase54. Limiting consumption of 320 

agricultural commodities which pose a high conservation risk, such as coffee, cocoa and oil palm, is also 321 

key to reconciling agriculture and conservation activities. Alexander and colleagues55 show that just 322 

marginal shifts in food consumption habits, reduced food waste; switches from ruminant to plant-based, 323 

insect, and monogastric protein sources; and replacing marine-sourced seafood with aquaculture 324 

products; help to significantly reduce agricultural land use which in turn can alleviate pressures on 325 

conservation priority areas. Several barriers and opportunities exist to shifting consumption and 326 

production patterns away from high CP sites and products. The case of livestock products is an opposite 327 

example to understand these owing to the high risk it poses to high conservation priority areas and its 328 

role as a widely studied product in behavioral and policy studies. Empirical observation indicates a 329 

strong relationship between per capita income and meat consumption56 which signals the need for policy 330 

interventions to curb livestock production. Restructuring physical micro-environments to improve 331 
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availability and accessibility of meat alternatives offers an effective and publicly acceptive measure 332 

within this context57. Whilst negative labelling of products has been shown to be more effective than 333 

positive labelling at shifting consumption patterns58, as well as arguing shifts on the grounds of health 334 

rather than environmental benefits59. There is also a positive, potentially causal link between perceived 335 

effectiveness of interventions and public acceptability, suggesting a role for education and public 336 

information campaigns in shifting awareness of biodiversity (un)friendly products to open space for 337 

acceptable and effective interventions60. However, several barriers remain to demand-side dietary 338 

interventions. First, there is a need to better distinguish high and low impact consumers within countries 339 

where policy measures should be targeted61. This relies on using micro-consumption data instead of 340 

nationally averaged consumption accounts to profile biodiversity footprints of consumers by socio-341 

demographic groups. Such data could be integrated into the framework of analysis presented in this 342 

study. Second, dietary shifts call for wide scale changes to production systems and potential land sparing 343 

which may negatively impact farmer livelihoods. Within this context, agri-environmental policies are 344 

needed to support, financially and technically, farmers to transition towards agro-ecological farming 345 

methods and production. However, we must also carefully monitor deforestation due to farmland 346 

expansion from declining agricultural productivity62. The uptake of such schemes relies on 347 

communication to and engagement of farmers at the early stages of policy development63, but may face 348 

continued resistance from large-scale farmers which are less willing or able to change their production64. 349 

Nevertheless, the widespread availability of synthetic animal protein within the next decade also signals 350 

an inevitable decline in the competitiveness of intensive livestock production65. Third, consideration of 351 

nutritional parity in dietary transitions remains a concern within low-income countries and requires 352 

modelling both the ecological and health outcomes of policy and scenarios66.   353 

Although not explored within this study, closing yield gaps through improvements in agricultural 354 

productivity are important to consider alongside alternative sourcing and dietary change to mitigate 355 

pressures on conservation priority areas67. Improvements in agricultural productivity may lead to greater 356 

food self-sufficiency of countries currently outsourcing their agricultural production to areas of high 357 
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conservation priority68. However, cropland expansion and intensification in Central and South America, 358 

sub-Sarahan Africa, India and China also present a latent threat to high conservation priority based if 359 

current food consumption patterns continue69. Evaluating the scale and drivers of potential conflicts 360 

between agricultural land use and conservation priorities is subject to several sources of uncertainty. 361 

These concern (i) the characterisation of conservation threats posed by agricultural commodities, (ii) 362 

their traceability to final consumption sectors, and (iii) how they might evolve over time. Within this 363 

study we assume the threat of agricultural commodities to ecosystems and biodiversity correspond only 364 

to the proportion of their cultivation in high conservation priority sites. However, such proxy does not 365 

account fully for differences in cultivation practices (e.g., farming intensity, land conversion, and 366 

fertiliser application) between commodities which influence the disturbance of habitats in different 367 

ways70. In addition, agricultural production and biodiversity conservation can coexist through 368 

sustainable farming practices71. While a commodity can be produced in certified production areas (e.g., 369 

by Soy Moratorium, Roundtable on Sustainable Palm Oil) or managed pasturelands instead of in 370 

unadopted areas or native grasslands, it is not possible to distinguish such different areas in our analysis 371 

because land management practices are absent from the input land use data. Areas of abandoned, 372 

degraded or underutilised land where land restoration can enhance crop production and avoid 373 

encroachment on high conservation areas were also not identifiable. As more data becomes available, 374 

commodity-specific cultivation methods and their relative threats could be weighted in future analyses. 375 

Meanwhile, the final products and countries of demand responsible within this context are not fully 376 

identified due to data gaps which limit the traceability of agricultural commodities through complex, 377 

globalised supply chains. Improved linkage of big data on environmental and economic flows at high 378 

sectoral and spatial resolution can help towards this end and is an active area of development in life cycle 379 

analysis and economy-wide environmental footprinting40,72–75. Similarly, future developments in remote 380 

sensing techniques and spectral downscaling76 could enable detailed mapping of cropland and 381 

commodity-level land clearing, offering the capability to monitor conservation conflicts in response to 382 

land use change.   383 
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Bottom-up supply chain modelling approaches25,77,78 which combine farm-level data and track trade 384 

using customs declarations offer great promise within this context, particularly for company goal-setting 385 

and regulatory monitoring around sustainable procurement. For example, trase 386 

(https://www.trase.earth/) maps company-level supply chains for major forest-risk commodities from 387 

different production areas in several tropical countries. However, such an approach often relies on 388 

proprietary data which limits its applicability globally, across many producers and commodities. Hence, 389 

there is a continued need for both comprehensive global studies, as presented here, as well as research 390 

based on bottom-up data collection and ground truthing. Yet, the opaque nature of agri-commodity trader 391 

and processor activities, which command majority control of this system, remains a key challenge in 392 

tracing supply chains and their impacts. Our study identifies individual case studies and high-risk 393 

commodities where such advancements should be targeted. However, understanding how the 394 

biodiversity risks highlighted within this study will change under given policies or scenarios requires 395 

dynamic and coupled modeling of the socio-economic and environmental system and a departure from 396 

prevailing static methods of environmental footprinting and forecasting. 397 

This study uses one selected method for evaluating conservation value, though many others are 398 

available. Although agriculture and conservation practices can coexist within a pixel, deforestation, 399 

agricultural encroachment and hunting still occur in some protected areas worldwide due to illegal 400 

activities79,80. Indeed, the latest satellite-based analyses reveal a recent accelerated cropland expansion, 401 

with a significant proportion encroaching on natural forests and protected areas81,82. Moreover, unless 402 

protected areas are securely fenced, animal species that leave the protected area may be killed for food 403 

or to protect crops. As such, a state of 'potential conflict' can occur where sites of high conservation 404 

priority and agriculture co-occur in a pixel, even if such a site has protected status. The conservation 405 

priority maps derived from the Zonation method will tend to prioritize tropical areas and hotspots with 406 

high richness or endemicity, but do not take into consideration other possible conservation priorities 407 

such as preserving a certain mix of biomes or hotspots worldwide. Additionally, we note that there is a 408 

structural bias, present across many studies on biodiversity, to assign lower biodiversity protection value 409 
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to developed areas in Europe and North America because those areas are assessed based on their current, 410 

rather than historical or potential, biodiversity. Additionally, measuring the conservation value of land 411 

is difficult, and the results presented in this study are subject to the accuracy of the selected methods for 412 

estimating the indexed conservation priority of land. While our global CP map focuses on species 413 

richness, it could undermine the conservation of other dimensions, such as phylogenetic diversity and 414 

trait diversity. Since the overlap of key areas across different biodiversity dimensions can be low83, 415 

careful consideration must be given to the other dimensions when shifting agricultural production or 416 

supply chains to low-CP areas. It is crucial to emphasize that this study does not account for landscape 417 

connectivity, spatial continuity of ecosystems, or ecological fragmentation within each pixel. 418 

Climate change is likely to change the nature of interactions between species and agricultural land 419 

use. Consequently, managing existing risk hotspots between agriculture and conservation priority sites 420 

will not necessarily safeguard species from future, climate-induced threats. Understanding how these 421 

tensions will evolve, alongside non-agricultural drivers of habitat degradation and loss, such as 422 

urbanisation, extractive industries and direct overexploitation, is essential to anticipate future 423 

conservation needs3,84–86. Conservation gains will also need to be achieved in a manner consistent with 424 

other environmental limits (climate, water, energy and nutrient) and social goals (e.g., protection of land 425 

rights, poverty alleviation, and good nutrition)87–91. By meeting the increasing scope and spatial 426 

resolution of assessments in other domains92–94, the analysis developed within this study can serve as 427 

part of a broader assessment of meeting human needs within planetary boundaries. Here, our study 428 

emphasizes a crucial piece of the puzzle needed to evaluate options for sustainable food systems, which 429 

have had limited subnational spatial coverage of biodiversity threats to date. 430 

Methods 431 

This study shows at a global-level which recent agricultural production and consumption activities 432 

across 197 countries potentially conflict with biodiversity conservation. This is achieved by linking 433 

detailed agricultural production maps, trade data, and final consumption statistics for 48 commodities 434 

with a high-resolution map of conservation priority sites based on an Ecological Niche Model (ENM) 435 
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of over 7,000 species. This analysis extends the scope of previous studies by country coverage, spatial 436 

resolution, commodity-level detail, and integration of species threats. 437 

Our analysis consists of two main steps to expose the location and drivers of potential conflict 438 

between conservation priority sites and agricultural products. First, we assess the level of co-occurrence 439 

between agricultural production activities and conservation priority sites. Second, we link agricultural 440 

commodity production in conservation priority sites to countries and sectors of final consumption using 441 

trade and final use data to attribute responsibility for the drivers of these potential conflicts. The data, 442 

methods and limitations pertaining to these steps is outlined in the remainder of this section. 443 

3.1. Overlaps between agricultural and conservation value 444 

Risk hotspots between agricultural production and conservation priorities were analysed by 445 

measuring their spatial extent and co-occurrence in a pixel unit. Conservation risk hotspots are estimated 446 

and classified by comparing the percentage of land use for each agricultural commodity within a pixel 447 

and its CP index. Increasing land-use proportions in a high CP value pixel causes more risk hotspots 448 

between agricultural production and biodiversity conservation. This produced a profile for each 449 

agricultural commodity which captured its production in sites of varying conservation priority. Since 450 

such profiles built from 2010 data, we refer to sites of agricultural production in high conservation 451 

priority areas as ‘potential conflicts’ between agriculture and conservation, or ‘risk hotspots’, accepting 452 

the scale or severity of these conflicts may have evolved due to shifting production, consumption, trade 453 

and land-based conservation measures. For instance, the risk level may be overestimated in some high 454 

CP sites where agricultural expansion took place long before 2010 and existing native habitats are still 455 

intact or well managed.  456 

A CP index ranged from 0 to 1 (Supplementary Figure 12), which is assigned to each pixel, is 457 

identified using the Zonation conservation planning tool detailed in Moilanen et al. (2005) and Moilanen 458 

(2007)35,36. The Zonation is one of the most widely used tools in the field of systematic conservation 459 

planning. While biodiversity hotspots can be determined from the IUCN Red List of Threatened Species 460 
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maps3, we adopt the Zonation with input data generated by ENM for the following reasons. First, ENM 461 

allows us to predict future species distributions under climate change scenarios. Second, ENM can 462 

equilibrate omission errors (when a species is mistakenly thought to be present) and commission errors 463 

(when a species is mistakenly thought to be absent). The Zonation method generates a hierarchy of 464 

landscape prioritization based on the degree to which areas support connectivity for multiple species 465 

synchronously. It starts from the full landscape, and then stepwise removes all cells one by one in such 466 

a way that a cell with the smallest marginal loss is removed first, leading to the most critical areas 467 

remaining last. As such, a cell with a CP index nearly zero has been deleted in an early stage of the 468 

process, whereas the highest value cells (CP ≈ 1) are removed last. An additive benefit function was 469 

selected as a cell removal rule, which is appropriate if the feature samples from a larger regional feature 470 

pool36. Only species threatened by agriculture were selected for mapping conservation priority using 471 

IUCN Threats Classification Scheme and binomial generalized linear models. As a result, this screening 472 

revealed that agricultural activities likely increase the extinction risk of 7,143 out of the initial 8,427 473 

species. We used projected maps of these species in 5 taxonomic groups (1,436 vascular plants, 449 474 

amphibians, 327 reptiles, 4,022 birds, and 909 mammals) as biodiversity feature maps. These maps are 475 

projected by ecological niche model using MaxENT algorithm and species occurrence data from the 476 

Global Biodiversity Information Facility (GBIF)95 at 0.5◦ × 0.5◦ grid (ca. 60 × 60 km at the equator) 477 

resolution (see the details in Supplementary Appendix 3, 4 and Ohashi et al.96). These five taxonomic 478 

groups have contributed to the most significant decline in biomass on land due to historical human 479 

impacts97. For each taxon, we selected the species with the most reliable occurrence records from the 480 

entire GBIF dataset. In contrast to various ecological niche modelling methods developed for presence-481 

absence data (e.g., generalized linear models) which cover only a limited number of species at a global-482 

scale98, we applied the MaxENT algorithm due to its ability to accommodate species data of small or 483 

incomplete sample size and presence-only species records99. Following the approach of Phillips et al.100, 484 

the effect of sample selection bias is reduced by equal treatment of both occurrence and pseudo-absence 485 

data sets. 486 
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Supplementary Figure 13a shows the relationship between the importance ranking and the absolute 487 

conservation value under each scenario. Because the Zonation algorithm gives rank for each cell one by 488 

one, CP map pixels have equal frequency distribution for each CP index interval (histogram bins, 489 

Supplementary Figure 13b). CP index scale is equivalent to percentile scale, which can be identified 490 

from boxplots. For example, if a pixel has a CP index = 0.751, its value will be bigger than that of 75% 491 

of the map pixels. Therefore, we classify absolute CP values into relative rank using a percentile scale. 492 

Accordingly, medium-high CP is more than the median, high CP more than the third quartile, very high 493 

CP more than 90th percentile. 494 

We used current protected area (World Database on Protected Area, https://www.protectedplanet.net 495 

accessed on Aug, 2019) as removal mask layer. We treated the grid with more than 50% covered by 496 

protected area type I, II, III as already be ear-marked for conservation: these cells will be removed only 497 

after there are no more cells with lower mask level values left, and thus will be included in the top 498 

fraction of the solution. We weighted each species using a combination of IUCN Red List Categories 499 

and regional occurrence proportion, then normalized the weight based on the number of species in each 500 

taxon (see the details in Supplementary Appendix 3). Weight of regional occurrence proportion was 501 

calculated by iterative proportional fitting to adjust the proportion of taxonomic groups and native 502 

regions of the modeled species to the whole species assessed in IUCN Red List. Although the IUCN 503 

Red List assessment does not cover all species in the world, we expect these weighted scores to reflect 504 

the species richness of the region.  505 

Global crop and livestock distribution maps were combined to estimate land use of 42 agricultural 506 

commodities and six livestock systems (cattle, sheep, goat, pigs, duck, and chickens) in 2010. The global 507 

crop distribution maps (hereafter MapSPAM maps) and livestock maps were analysed at 5 minutes of 508 

arc (approximately 10 × 10 km at the equator)101 and 1 km102 resolutions, respectively, were sourced 509 

from https://www.mapspam.info/ and https://livestock.geo-wiki.org/home-2/. For MapSPAM maps, 510 

land use refers to the actual area where a crop is grown circa 2010, but does not capture crop production 511 

intensity which can influence, positively and negatively, species threats103. Since the original livestock 512 
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maps only represent livestock density (heads/km2) in 2006, we estimated physical land use for livestock 513 

in 2010 by converting the density into the physical area used for housing, exercise, and grazing of 514 

animals (see details in Supplementary Appendix 2). To estimate conflicts between conservation and 515 

agriculture, global crop and livestock land use maps were then resampled to fit the spatial resolution of 516 

0.5 decimal degrees of the CP map. In calculating the total area of each pixel, we excluded the pixel's 517 

permanent water surface area using Global Surface Water data104.  518 

3.2. Linking biodiversity risks to final consumers 519 

Conservation risk hotspots link countries, sectors and consumers in globalised agricultural supply 520 

chains. We use a physical trade model to assess the drivers of conservation risk hotspots from a 521 

consumption perspective, for 197 countries and one unspecified area. The model is calculated from 522 

production and bilateral trade data for 2010 obtained in the FAOSTAT database105. Here, we assume 523 

agricultural products are consumed in the country of import, or domestically in the country of 524 

production, and attribute conservation risk hotspots accordingly. We aggregate 160 crop commodities 525 

and ∼270 primary/processed crop products in FAOSTAT’s production and trade data, respectively, into 526 

42 MapSPAM’s crop commodities. Similarly, 54 primary and processed livestock products are grouped 527 

into six livestock commodities. These aggregations may expand the footprint of a consumer to map 528 

pixels where a FAOSTAT’s commodity is not produced. The processed agricultural products are 529 

converted into their primary commodity equivalents using protein conversion factors. We utilize calories 530 

instead for products containing no protein, such as sugar and vegetable oils (olive, coconut, soybean, oil 531 

palm, etc.)106. This approach can avoid double counting from technical conversion factors based on 532 

commodity mass107. To build the physical trade model, we adopted the method proposed by Kastner et 533 

al.108,109 that accounts for re-exports of processed food or agricultural products and their use as inputs in 534 

the feed sector. Details on calculating the physical trade model and crop and livestock land-use footprints 535 

are given in Supplementary Appendix 2. To our knowledge, the disaggregation of feed cropland for each 536 

livestock commodity has never been done at the level of detail as this study. While FAOSTAT has 537 

limitations due to its reliance on estimated data, it is superior in terms of detailed commodity 538 
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classification, global coverage for domains of production, trade, and food/commodity balances, and 539 

compatible with the spatial data used. Both MapSPAM and livestock distribution maps were constructed 540 

to align with FAOSTAT national statistics. Livestock feed is also estimated mainly based on food and 541 

commodity balance sheets of FAOSTAT. 542 

The cropland in the MapSPAM maps is classified into four production systems for each crop: irrigated 543 

high input production, rainfed high input production, rainfed low input production, and rainfed 544 

subsistence production. While most of the products from irrigated and rainfed high input systems are 545 

produced for large-scale domestic markets and export, agricultural output from rainfed low subsistence 546 

systems are produced primarily for local consumption. We assign the production source of global 547 

agricultural supply chains to these production systems by comparing MapSPAM’s production volumes 548 

and FAOSTAT export volumes for a crop. If the total export volume of a crop is smaller than the 549 

production volume from irrigated and rainfed high inputs systems, all non-domestic consumer impacts 550 

are assigned to these production systems, and the remaining land use is attributed to domestic 551 

consumption. Conversely, if the export volume of a crop is greater than the production volume from 552 

such systems, the difference is allocated to rainfed low input subsistence productions. Such an allocation 553 

approach ensures a more accurate assessment of the embodied ecological impacts in trade at the sub-554 

national level. We also note that the assumption that high-yield goods go to export markets may not 555 

always be accurate; there could be cases where export markets prefer low-yield goods due to either 556 

quality or price considerations.  However, using physical production accounts enables analysis of 557 

biodiversity impacts according to a highly-detailed agriculture commodity classification. 558 

Data, Materials, and Software Availability 559 

The results, calculated as described in the Methods, are based on the data from FAOSTAT 560 

(https://www.fao.org/faostat/en/#data), MapSPAM (https://www.mapspam.info/data/), Livestock Geo-561 

Wiki (https://livestock.geo-wiki.org/home-2/), GBIF (https://www.gbif.org/), WorldClim 562 

(https://www.worldclim.org/data/index.html) and MCD12C1v006 563 

(https://lpdaac.usgs.gov/products/mcd12c1v006/) databases, all of which are publicly available. The 564 
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footprint maps are available online at https://agriculture.spatialfootprint.com/biodiversity/ and provided 565 

in the Supplementary Information. Codes are available at https://github.com/nguyenthoang/SACCf. 566 
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