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There are a number of approaches for constructing time series of input–output tables. Some authors generate an
initial estimate for a base year, and then serially estimate tables for subsequent years using the balanced prior-year
table as an initial estimate. Others first generate a series of initial estimates for the entire period, and then balance
tables in parallel. Current serial methods are affected by sudden leaps in the magnitude of table elements, which
occur straight after a period of data unavailability. Current parallel methods require two complete tables for base
and final years in the same classification, and therefore do not work under misaligned or incomplete data. We
present a new method for constructing input–output table time series that overcomes these problems by averaging
over alternate forward and backward sweeps across the time series period. We also solve the problem of hysteresis
causing forecast and backcast table estimates to differ.

Keywords: Input–output tables, Time series, Matrix balancing, Forecasting, Backcasting

1. INTRODUCTION AND LITERATURE REVIEW

Perhaps the most widely publicised results so far derived from a time series of input–
output tables is the examination of the UK’s carbon footprint by Wiedmann et al. (2010)
and Lenzen et al. (2010b), who demonstrated that – contrary to prior belief or myth – the
UK’s climate change responsibility had increased over the past decade, because emissions-
intensive production was being outsourced to other countries, notably China. The political
implications of communicating these findings to the public prompted the British Minister of
the Environment to comment on whether the UK was in delusion over its emissions (BBC,
2008).

National statistical offices publish input–output tables over time. However, in virtually
all cases, these tables do not adhere to a constant sector classification, and are not published
every year. A notable exception are the tables issued by Statistics Denmark (1966–2007 at
the time of writing; Statistics Denmark, 2011), which were used, for example, in a structural
decomposition analyses (SDAs) by Wier (1998) and Wier and Hasler (1999).
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414 M. LENZEN et al.

At the time of writing, the most detailed input–output time series constructed from incom-
plete and misaligned data existed for Australia, spanning the period 1974–2005. It was
developed by Wood (2009), and subsequently applied to structurally decompose Australia’s
greenhouse gas emissions, to trace the evolution of its economic interconnectedness (Wood
and Lenzen, 2009), and to document its material history (Wood et al., 2009). Similar time
series were developed for many decades in order to publish SDAs – amongst others – for
Austria (Skolka, 1989), China (Lin and Polenske, 1995), Taiwan (Chen and Rose, 1990;
Wang, 1996; Chang and Lin, 1998), the US (Casler and Rose, 1998; Rose, 1999), India
(Mukhopadhyay and Chakraborty, 1999), Netherlands (De Haan, 2001), Japan (Han, 1995;
Kagawa and Inamura, 2001), the European Union (Alcántara and Duarte, 2004), Chile
(Muñoz and Hubacek, 2008), the UK (Baiocchi and Minx, 2010) and Norway (Yamakawa
and Peters, 2011).

These examples clearly show the relevance and usefulness of time series of input–output
tables for policy- and decision-making. Notwithstanding their relevance, such time series are
scarce, partly because of the substantial amount of labour and time required for their com-
pilation, partly because of nearly unsurmountable challenges with respect to harmonising
the often wildly varying product and industry classifications as well as currencies. Further,
most time series are characterised by temporal gaps, that is, multiple years are missing.
If a continuous, harmonised time series is required, analysts have to construct their own
database from temporally incomplete and sectorally misaligned data. For example, plans
for constructing continuous time series of global multi-region input–output tables were
announced at the 18th International Input–Output Conference in Sydney (Lenzen et al.,
2010a; Los and Stehrer, 2010). This article deals with challenges involved in developing
such continuous, harmonised time series.

There are a number of methods for constructing time series of input–output tables. Some
of these methods start with an initial estimate for a base year, and then serially estimate
the table for each following year using the balanced prior-year table as an initial estimate.
Other methods first generate a series of initial estimates for the entire period, and then
balance each year in parallel. Whilst these methods differ with regard to their strengths and
weaknesses (Temurshoev et al., 2011), they all are affected by at least one of the following
two problems. The first problem is related to data missing for one or more intermediate years.
Current serial methods are affected by sudden leaps in the magnitude of table elements,
which occur straight after a period of data unavailability. We refer to the problem posed
by such leaps as hysteresis. Current parallel methods suffer from the restriction that they
require two complete tables for the base and final year in the same classification, meaning
that they cannot be applied to sets of data that are inhomogeneous and/or incomplete for
the base and final year. We will elaborate on these issues in the main part of this article.

For the example of the Brazilian Supply-Use Tables (SUTs) from 1970 to 2008, we
present a new method for constructing input–output table time series that overcomes the
problems described above by starting with only one initial estimate, and then averaging over
alternate forward and backward sweeps across the entire time series period. In particular,
we discuss how our method solves the problem of hysteresis that occurs when input–output
transactions are dependent on whether they are the result of forecasting or backcasting over
time.

Note that our claim is not to have developed a method that generates input–output tables
that adhere more closely to the ‘true’ tables, however defined, as explored in Temurshoev
et al.’s (2011) comparative study. In fact, our approach will work for any of the serial
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CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 415

methods compared by Temurshoev et al.1 The key innovation of our method is that it works
hysteresis-free under circumstances in which current methods will either be affected by
hysteresis or will not work at all because of excessive raw data inhomogeneity. Therefore,
first, we do not test the performance of our method by comparing its output with known
‘true’ tables, because this is not the focus of our work. Second, we can compare our method
neither with existing serial methods (because these were not devised to deal with hysteresis,
and hence should not be compared on this basis) nor with existing parallel methods since
these methods do not work on data sets with misaligned base- and final-year initial estimates.

In this study, we demonstrate the features of our method for the example of Brazil’s SUTs
between 1970 and 2008. A time series of Brazilian SUTs from 1970 to 1996 has previously
been developed by Wachsmann et al. (2009), and applied to an SDA of Brazil’s energy use.
The difference between our work and that of Wachsmann et al. (2009) is that we extend the
time series from 1996 to 2008, and that we use the 2005 product and industry classification,
because the data supporting this intermediate year are more detailed than those supporting
the 1996 classifications used by Wachsmann et al. (2009), and more detailed than those
supporting 2000–2008 published SUTs. Note that the raw data for constructing this time
series are such that superior data do not exist in the same classification for the base and final
years, and the aggregation structure (1970) and incompleteness (2008) of data does not even
allow constructing an initial estimate in the 2005 classification without further information.
Such a situation exactly reflects the circumstances under which the method we propose has
clear advantages over existing methods.

In the following section, we explain our methodology and data sources. In particular,
we illustrate the problem of hysteresis and how it can be overcome by using a clear and
simple example. Then, we explain the features of our approach using the Brazilian SUT
time series. Finally, we draw some conclusions for future work of compiling input–output
time series.

2. METHODOLOGY

2.1. Constrained Optimisation for Input–Output Table Balancing

The compilation of any input–output table requires the use of an optimisation method for
table balancing, for example for the reconciliation of row and column totals. The approaches
most often used for this task are variants of the RAS method, and various other optimisation
methods (Robinson et al., 2001; Jackson and Murray, 2004; Lahr and de Mesnard, 2004;
Huang et al., 2008; Temurshoev et al., 2011). These methods differ mainly by the type of
objective function that is minimised. Any of these alternative methods could be used in the
cycling method that is the main idea in this study.

Here, we balance the SUTs (vectorised as a) by specifying an initial estimate (vectorised
as a0), and applying the quadratic programming approach by Van der Ploeg (1988). External
constraint information c (often called ‘superior data’) are linear functions c = G a + ε

of the vectorised SUT entries a, as well as disturbances ε that describe the constraint
violation. Whilst any of the common optimisation approaches for table balancing would

1 For example, RAS variants such as GRAS and KRAS, and also normalised, improved or weighted squared
differences.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 0
5:

26
 0

9 
O

ct
ob

er
 2

01
7 



416 M. LENZEN et al.

suit to demonstrate the principle of our cycling method, as mentioned above, we chose
the quadratic programming approach because the disturbances allow effective handling
of disparate, unaligned, conflicting and unreliable information (Lenzen et al., 2009), and
because signs and zeros are not necessarily preserved. The sign- and zero-preservation
inherent in the variants of the RAS balancing method (and other methods, see Huang et al.,
2008) is undesirable because it does not allow account items such as net taxes and changes
in inventories to switch signs, and it forces all variables connected to zero-valued constraints
to zero without compromise.

Van der Ploeg extends a with the disturbances ε, to a compound unknown p, distributed as

p =
(

a
ε

)
∼ D

[(
a0

0

)
,

(
�a

�c

)]
= D

[
p0, �

]
(1)

with mean p0 = [a0|0], and variance � = [�a|�c]. Note that the above formulation also
caters for fundamental input–output balances (such as that each sector’s gross input has
to equal its gross output), where we write constraints as a difference that is forced to be
zero, with the corresponding element in �c also being zero, hence asking for an exact fit.
Extending C = [G| − I], where I is the unity matrix, and assuming that all covariance terms
in � vanish, the generalised quadratic problem becomes

Minimise f = (p − p0)
′�̂−1(p − p0), subject to Cp = c. (2)

Setting up the Langrangean as L = (p − p0)
′�̂

−1
(p − p0) + λ(Cp − c), solving the first-

order condition leads to analytical solutions λ = (C �̂C′)−1(Cp0 − c) and p = p0 − �̂Cλ;
however, these do not guarantee any non-negativity that is usually imposed on all input–
output transactions except subsidies and changes in stocks. We therefore add inequality
constraints li ≤ pi ≤ ui forcing the solution to lie within lower and upper bounds li, ui ∈
[−∞, +∞]. The mixing of equality and inequality conditions precludes analytical solution,
and requires sophisticated numerical solvers.

2.2. The Problem of Hysteresis in Forecasting and Backcasting

When estimating input–output time series, the superior data are usually affected by temporal
gaps, that is, information on input–output transactions is usually not available for all years
within the time series period. In order to overcome this problem, researchers have estimated
transactions that are not supported by data in 1 year on the basis of information available
for nearby years.

National statistical offices often use a prior-year table as an initial estimate for compiling
an updated table. If such a procedure is carried out annually such as by Statistics Denmark
(2011), a continuous time series is obtained. However, in almost all countries, input–output
tables are issued with multiple-year gaps between them. If a continuous time series is
desired, the question arises as to which value unknown intermediate-year transactions should
assume.

Temurshoev et al. (2011) give a comprehensive comparison of eight methods that can
be used to update series of input–output or SUTs. Six of these methods (RAS and squared
differences variants) start with an initial estimate for a base year, and then serially estimate
the table for each following year using the balanced prior-year table as an initial estimate.
The remaining two methods (EUKLEMS and Euro) first generate a series of initial estimates
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CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 417

FIGURE 1. Hysteresis effect of successive fore- and backcasting of an input–output transaction.

0 1 2 3 4 5 6 7 8 9 10 11

1

1.2

1.4

1.6

1.8

2

Year

Forecasting

Backcasting

Transaction x

Notes: x fixed to x1 = 2 and x10 = 1 only for years 1 and 10. Data are assumed missing for year 11,
and the year-11 solution follows the year-10 solution.

for the entire period, and then iteratively balance each year in parallel. We will first explain
a problem that affects any of the serial methods.

Assume an input–output transaction x for which superior data exists in year 1 and in
year 10, with x1 = 2 and x10 = 1. Assume further that no data support the estimation
of x in years 2, . . . , 9 and in year 11. If an initial estimate is set up for year 1, and
years 2, . . . , 11 are enumerated by progressing the solution from year 1 forward in time,
then x2,...,9 = 2. The solution in year 10 is always x10 = 1, because it is fixed by a con-
straint representing the superior data point. The solution in year 11 is always x11 = 1,
because similar to the forecasting progression across years 2, . . . , 9, there are no data
available to alter the value for x. If in contrast an initial estimate were set up for year
10, and years 9, . . . , 1 were enumerated by progressing the solution from year 10 back-
ward in time, then x2,...,9 = 1.2 In other words, the solution for the intermediate years
depends on whether forecasting or backcasting is employed. Successive fore- and back-
casting would result in a hysteresis curve (Figure 1), and hence we refer to this problem as
hysteresis.

The choice between fore- and backcast solutions does not only arise out of having to
deal with temporal gaps. For example, in our case, we needed to make a choice about
which product and industry classifications to use for our SUT time series. We chose the
2005 classifications, but we could have chosen the ones for 1970. In the latter case, we
would have taken 1970 as our only initial estimate year, and all subsequent-year infor-
mation as superior data supporting constraints for a forward-progressing optimisation

2 The case of missing data for year 0 would be identical to that of missing data in year 11, so we do not treat it
explicitly.
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418 M. LENZEN et al.

procedure. But actually, we selected 2005 as our initial estimate year and, when construct-
ing the tables for the period 1970–2005, we use all prior-year information as superior
data supporting constraints for a backward-progressing optimisation procedure. Hence,
if we only ever considered one optimisation sweep of the time series period, the mag-
nitude of the resulting SUTs would have a significant and undesirable dependence on
the choice of initial estimate and classification. Obviously, such arbitrariness needs to be
avoided.

One way of avoiding the sudden leaps in the values of table elements is to pre-define
a series of initial estimates, one for each year, that is characterised by smooth inter-year
transitions of table values, and then to balance each of those initial estimates separately
according to the constraints imposed by the data for the respective year. The EUKLEMS
and Euro methods investigated by Temurshoev et al. (2011) are two examples for such a
parallel approach. Similarly, Wood (2011) uses regression techniques in order to inter- and
extrapolate incomplete initial estimate data over time.3 Without going into details of these
parallel methods, we stress at this point that all of the above parallel approaches require
the initial estimate of the base and final years to exist in the same sector classification.
Essentially, this requirement prevents the usage of such approaches for any application
where the available data do not support the construction of such homogeneously classi-
fied initial estimates.4 For example, in our case, some of the 1970 superior data are an
aggregate of elements to be estimated in the 2005 classification, and the 2008 data are
incomplete. None of the parallel methods could operate using these data sets without further
information.

In order to circumvent the restrictions imposed by incomplete and misaligned initial
estimate data whilst at the same time ensuring smooth (that is hysteresis-free) inter-year
transitions, Tarancon and Del Rio (2005) apply the stable structural evolution hypothesis,
and use adjacent-year values in order to formulate bounds as constraints for unknown input–
output coefficients, which stay active during balancing. However, since these bounds are
fixed, it may happen during matrix optimisation that they conflict with other constraints.

3 Wood finds that, depending on which years’ data are available, and the trends inherent in these data, some inter-
and extrapolation functions yield unrealistic results. Wood settles on a sign-preserving exponential regression, but
requires additional caps in order to limit regression results to realistic values. Whilst such a regression approach
smoothes the initial estimate, it does not respect the constraints in the subsequent balancing procedure. Hence,
smooth trends of input–output entries in the initial estimate may be overridden and destroyed by constraints posed
by non-smooth data and by balance constraints.
4 In principle, one could think of ways to interpolate initial estimates from inhomogeneous base- and final-year
data; however, catering for all conceivable data gap structures would be far from trivial. Essentially, a linear
interpolation between any two known neighbouring-year values would appear desirable and feasible. However, in
practice, this is not possible because temporal gaps in data supporting real input–output time series are far from
simple. First, there may be more than one supporting data point for a transaction in a particular year, and some of
the supporting data may be aggregates relating to a sub-sum of the table to be estimated. In such complex situations
of data availability, one necessarily has to choose which data to base the initial estimates on, and exclude any data
that overlaps and/or conflicts with the chosen data (Wood, 2011). This means that initial estimates thus constructed
are either labour-intensive (if based on a large number of inhomogeneous supporting data) or relatively arbitrary
and conflicting (if based on a small number of inhomogeneous supporting data). For example, Baiocchi and Minx
(2010) use weighted averages of neighbouring tables in order to interpolate missing intermediate input–output
tables in a multi-region input–output time series constructed around the UK by Wiedmann et al. (2010). In order
to substitute missing information at the beginning and end of the analysis period, they use constant technology
coefficients of the earliest and latest available years. However, they qualify that ‘these are strong assumptions,
which can only be justified by the lack of global input-output data’.
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CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 419

This circumstance forces Tarancon and Del Rio to introduce a set of supplementary vari-
ables representing such incompatibilities, which in turn are subjected to an optimisation
procedure, until the input–output table time series has a feasible solution. For large-scale
and highly automated software platforms such as described by Lenzen et al. (2010a), and
also used in this study, such a procedure is problematic, mostly because it would require a
sensitivity analysis for every temporal gap.

One could re-formulate Tarancon and Del Rio’s conditions by introducing inter-temporal
constraints into the optimisation problem, such as xn − (xn−1 + xn+1)/2 ≤ tol, where tol is a
tolerance value for the deviation of any year-n transaction value xn from the average (xn−1 +
xn+1)/2 of its adjacent-year values xn−1 and xn+1. Such inter-temporal constraints would,
however, turn N separate optimisation problems for N years into one single optimisation
problem that is at least N times larger. Given present requirements for computer memory and
run-time (Lenzen et al., 2010a), a system of inter-temporal constraints is clearly prohibitive
for large-scale applications.

These examples may give the reader an impression of the challenges involved in achiev-
ing inter-temporal continuity from severely incomplete and inhomogeneous data. In the
following section, we examine an approach that employs alternate fore- and backcasting
of input–output tables across the time series period. Similar to Tarancon and del Río, we
constrain table elements not only by imposing values of superior data for any current year,
but at the same time, and as much as possible, align each current year’s table elements with
neighbouring-year elements. However, rather than using explicit constraint for the temporal
alignment, we accomplish smooth inter-year transitions by averaging over alternate forward
and backward sweeps across the entire time series period.

2.3. Forecast and Backcast Cycling

The basic idea behind fore- and backcast cycling is to take year-wise averages of the
forecast and backcast optimisation run solutions. More specifically, instead of simply being
prior-year solutions as described in Section 2.2, initial estimates ac,y

0 for year y in cycle c
are weighted sums of all prior-year y − z and all prior-cycle c − d solutions ac−d,y−z

ac,y
0 =

c−1∑
d=0

y−y0∑
z=0

w(d, z)ac−d,y−z (3)

with d and z being delay indices, and the weights w being normalised through∑c−1
d=0

∑y−y0
z=0 w(d, z) = 1. Note that ‘prior-year’can mean ‘earlier’or ‘later’year, depending

on whether c is a forecasting or a backcasting cycle.
In the following section, we illustrate the effects of cycling for the simple example in

Figure 2, and for the special case of w =
(

0 α

1 − α 0

)
, where α is a same-cycle, prior-year

weight, and 1–α is a prior-cycle, same-year weight. In other words, every initial estimate is a
weighted sum between the prior-year solution in the actual cycle, and the same-year solution
in the previous cycle. Since two adjacent cycles always proceed in opposite directions, this
choice of w effectively facilitates an ongoing averaging between forecast and backcast
cycles, and thus leads to a continuous convergence to a unique time series.

Following a backcast as in figure (lightest grey in Figure 2), the first averaging occurs
in year 2 of the following forecast (second cycle in Figure 2), where xprior-year = 2,
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420 M. LENZEN et al.

FIGURE 2. Ten-cycle hysteresis for α = 0.7.
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Notes: The first cycle (lightest grey) is a backcast from year 10 to year 1, which then becomes averaged
with a subsequent forecast, and so on. Successive cycles are distinguished by increasing shades of
grey.

xprior-cycle = 1, and the weighted average becomes 0.7 × 2 + 0.3 × 1 = 1.7. In the next
year, the averaging leads to 0.7 × 1.7 + 0.3 × 1 = 1.49, and so on. The next backcast (third
cycle in Figure 2) then decreases the average again, because the prior-year transactions start
in year 10 with a value of xprior-year = 1. Thus, the alternate fore- and backcasting continues,
and the hysteresis curve becomes narrower and more symmetrical (see darker shades in
Figure 2).

Seeing that forecasts and backcasts remain distinct even after 10 cycles (Figure 2), it
is clear that neither of them represents a unique representation of the transaction time
series. However, since the hysteresis curve becomes more and more symmetrical, two-cycle
moving averages nicely converge towards a unique time series (Figure 3). In this study, we
take the final (i.e. most stable) two-cycle moving average āN ,y = 0.5(aN−1,y + aN ,y) as our
input–output table solution.

Setting the same-cycle, prior-year weight to α = 0 means that the initial estimate is
always and only taken from the same-year solution of the prior cycle. This means that each
subsequent cycle will reproduce the hysteresis profile of the first cycle. This can be seen
in Figure 4 where the 9th/10th-year cycle profile at α = 0 is identical to the profile of the
initial backcast in Figure 1.

On the other extreme, setting the same-cycle, prior-year weight to α = 1 means that
the initial estimate ignores any prior cycle and only ever considers same-cycle, prior-year
values. This means that subsequent cycles will go through the same hysteresis as in figure
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CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 421

FIGURE 3. Ten-cycle hysteresis for α = 0.7 as in Figure 2, but showing moving averages āN ,y over
two adjacent cycles.
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Notes: Successive adjacent-cycle averages are distinguished by increasing shades of grey. The
adjacent-cycle average converges to a unique time series.

over and over again, and the moving two-cycle average never changes from the step shape
shown in Figure 4 at α = 1. Intermediate values will produce gradual transitions as in

Figure 3. In this study on Brazil’s SUTs, we use w =
(

0 α

1 − α 0

)
with α = 1/2.

The cycling scheme we apply to Brazil’s SUTs proceeds as in Table 1. We experimented
with up to N = 11 cycles, but ultimately used fourth- and fifth-cycle iterates to construct
the final SUT time series, because the differences between the SUTs generated during these
cycles were already much smaller than 1% of the SUT means.

3. DATA SOURCES

3.1. Brazilian SUTs

Brazil’s first SUT set was published in 1979 by the Brazilian Institute of Geography and
Statistics (IBGE, 2010). It was compiled for the year 1970, on the basis of a nationwide
economic and demographic census. The tables were updated every 5 years until 1990,
following annual updates until 1996 (see details in Table 2). Following the recommendations
made in the United Nations (UNs) Systems of NationalAccounts, the IBGE developed a new
methodology that permitted synchronisation between the SUTs and the country’s System
of National Accounts. The 1990 and subsequent tables reflect this new approach, setting
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422 M. LENZEN et al.

FIGURE 4. Ninth/10th-cycle average ā10,y as in Figures 2 and 3, but for varying same-cycle,
prior-year weights α.
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Notes: We have omitted year 11 from this graph because the year-11 solution is identical to the year-10
solution.

TABLE 1. Fore- and backcast cycling in the estimation of Brazil’s SUT time series.

Notes: ‘C′ = cycle. A new cycle is started whenever the base year or the final year is reached.

them apart from the earlier tables, which were not integrated into the System of National
Accounts (IBGE, 2008).The IBGE has published a complete SUT time series from 1990 to
2008 (IBGE, 2011); however, in this database, the use table is only available in purchasers’
prices, and no margins and tax matrices are available to derive a basic price use table. Since
our aim is to estimate a SUT time series expressed in basic prices, we directly utilised from
this data set only the supply matrix, value added and gross output. We used the IBGE use
and final demand matrices to place constraints on the relative proportions of the basic-price
use and final demand matrices to be estimated. This procedure is equivalent to assuming that

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
tb

ib
lio

te
ke

t I
 T

ro
nd

he
im

 N
T

N
U

] 
at

 0
5:

26
 0

9 
O

ct
ob

er
 2

01
7 



CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 423

TABLE 2. Sector details for Brazil’s SUTs.

Final demand Value-added
Year Products Industries categories categories

1970 160 90 11 12
1975 261 127 15 18
1980 136 91 5 6
1990–1996 80 43 5 8
1997–1999 80 42 7 14
2000, 2005 110 55 6 8
2001–2004, 2006–2008 110 56 7 11

taxes and margin are a constant proportion of basic prices. The most recent SUT completely
available in all valuations (basic and purchasers’ prices) at the time of writing was that for
2005. We therefore use this SUT for our initial estimate, while the SUTs corresponding to
all previous years are used as superior data to constrain the solutions of our optimisation
runs. For years with SUTs unavailable,5 we fix total gross domestic product (GDP) to its
current-year value using data in IPEA (2010).

Each SUT database contains multiple tables, starting with the supply and use matrices,
value added, final demand, import matrices, sectoral participation and other coefficient
matrices. Except for the 1990–2008 SU tables, a reconciliation matrix provides a detailed
breakdown of total supply and use valued in purchasers’ prices, into basic prices and all
taxes and margins.

3.2. Harmonising Industry and Product Classifications Using Concordance Tables

The changes which took place over the years in the methodology used to implement the
Brazilian SUTs are reflected in the changing product and industry classification listed in
Table 2. In order to be able to use these data to formulate constraints on the SUT series to
be estimated, the data classifications and SUT series classifications have to be related to
each other using concordance matrices. The translation of these classifications leads to the
first serious challenge in constructing a harmonised SUT time series. We stress at this stage
that these translations do not lead to base- and final-year initial estimates in the desired
2005 classification (enabling one of the parallel approaches described by Temurshoev et al.,
2011), because first, part of the 1970s data are too aggregated to achieve this, and second, the
2008 data are incomplete. Our method works even with such data that are grossly insufficient
for constructing base- and final-year initial estimates. The concordances described in this
section are set up for the purpose of formulating constraints that relate whatever imperfect
data are available, to the table elements to be estimated.

The industry and product classifications used in the 1970, 1975 and 1980 SUTs are mostly
but not always more detailed than those used in 1985, 1996, 2000 and 2005. Nevertheless,
and considering also that the more recent SUT database is incomplete for our purposes, we
chose to cast our SUT time series in terms of the most recent (2000 and 2005) product and
industry classification, hoping that further updates would adhere to this standard. Compared

5 1971–1974, 1976–1979, 1981–1984 and 1986–1989.
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to the entire time period, the two recent classifications are of intermediate detail (Table 2).
As a consequence, the 1970, 1975 and 1980 tables are mostly aggregated before being
imposed as constraints on the harmonised SUT. In contrast, the 1990s’ tables have to be
used as constraints on sub-sums of the harmonised SUT (compare Lenzen et al., 2006). In
both cases, one needs a means of translating or, mapping, input–output transactions from
one classification into another. This is conveniently achieved using concordance matrices.

Each concordance matrix maps the classification categories from the previous years
(1970, 1975, 1980 and 1996) into the more recent 2005 classification categories, by placing
a 1 in a cell where two classes overlap, and a 0 otherwise (compare Lenzen et al., 2010a,
Section 2.2.3.2 and Appendices 1 and 2). Once again, the aggregation structure of the 1970s
data does not allow constructing an initial estimate for 1970 in terms of the 2005 classifi-
cation (as required by existing parallel methods) and as a result, some 1970s data points
relate to more than one 2005-classified table element. In total, 16 concordance matrices
were constructed, one for each group of common-classified years (Table 2), each in turn
subdivided into four separate concordances for industries, products, value-added categories
and final demand categories.

The Brazilian National Economic Activity Classification (CNAE; UN, 2010) was used as
the underlying guideline for the necessary aggregation and disaggregation procedures. This
classification is compatible with the third revision of the International Standard Industrial
Classification, recommended by the UNs Statistical Commission for the purpose of har-
monising global economic information. The recent classification for 2000 and 2005 adopted
by the IBGE is based on the CNAE classification.

In order to determine the most appropriate and consistent mappings, certain assumptions
had to be made. First, products and industries grouped within a certain CNAE hierarchy have
been kept together wherever possible. For instance, according to the CNAE classification,
‘Pig Iron’ is a group (24.1) in the ‘Metallurgy Division’(24), and appears in the 1970 matrix.
However, in the 2000/2005 industry classification, there is no separate classification for
pig-iron, only a ‘Steel Manufacturing and Steel Products’ class. A concordance between
the 1970 and 2000 matrices was hence made by including the 1970 pig-iron in the 2000
‘Steel Manufacturing and Steel Products’ industry, rather than in the ‘Other Metal Products’
industry, because the latter is listed in CNAE as a different division.

Second, a harmonisation problem occurs regarding fictitious ‘dummy’ sectors that the
IBGE includes in various years’ SUTs in order to compensate for the fact that certain
products, such as financial services, do not constitute intermediate consumption of the
productive sectors. As a result, it is assumed that such products are consumed by a dummy
sector, such as a fictitious financial sector, the total production of which adds up to zero
(Carvalheiro, 1998). The problem is that such dummy sectors do not appear in the 2000/2005
classification. To complicate matters further, it is not always clear whether as sector is a
dummy sector or not, for the term ‘dummy’is not consistently part of the classification label,
such as in the recycling sector in the 1975 industry classification. Whenever we located such
sectors in earlier classifications, we attempted to reclassify these to match the most similar
productive sector in the 2000/2005 classification.

3.3. Tackling Currency Changes

The second challenge is posed by Brazil’s changing currencies, which are a reflection of
the history of the Brazilian economy during the 35 years which span the chosen period of
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CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 425

TABLE 3. Comparison of Brazil’s GDPs in actual currency units for selected years as in the
input–output tables, and in 2009 Reais according to IPEA (2010).

Conversion
Year Input–output table currency GDP (actual currency) GDP (2009R$) factor

1970 106 Cr$ Cruzeiro Cr$ 189,865 R$ 692,171,670 3645.60
1975 106 Cr$ Cruzeiro Cr$ 843,886 R$ 1,118,327,860 1325.21
1980 106 Cr$ Cruzeiro Cr$ 11,690,557 R$ 1,583,388,910 135.44
1985 106 Cr$ Cruzeiro Cr$ 1,180,380 R$ 1,686,793,580 1429.03
1990 106 Cr$ Cruzado (Novo) Cr$ 31,759,185 R$ 1,851,108,470 58.29
1991 106 Cr$ Cruzeiro Cr$ 165,786,498 R$ 1,870,202,370 11.28
1992 106 Cr$ Cruzeiro Cr$ 1,762,636,611 R$ 1,861,470,110 1.06
1993 106 CR$ Cruzeiro Real CR$ 38,767,062 R$ 1,948,310,500 50.26
1994 103 R$ Real R$ 325,617,200 R$ 2,052,240,400 6.30
1995 103 R$ Real R$ 661,309,085 R$ 2,142,884,410 3.56
2000 103 R$ Real R$ 1,179,482,000 R$ 2,367,127,260 2.01
2005 103 R$ Real R$ 2,147,239,000 R$ 2,715,609,450 1.26

analysis. In the late 1980s and the early 1990, Brazil passed through periods of very high
inflation rates (for example, 81% in March 1990). In order to combat such high inflation,
the Brazilian currency was re-defined six times between 1970 and 1996, so that most of
the input–output tables are expressed in different currencies, rendering the harmonisation
of tables rather difficult. We converted all input–output tables into constant 2009 Reais
by benchmarking the input–output tables against constant-price GDP data in IPEA (2010)
(Table 3, compare with Wachsmann et al., 2009).

4. RESULTS

After completing N fore- and backcast cycles across the entire time series period, we have
accumulated a data set an,y

i of SUTs, vectorised across sectors i, and one each for every
cycle n and every year y. From this data set, we compute the final (i.e. most stable, see
Figure 3) vectorised two-cycle averages āN ,y as our time series solution.

Figure 5 shows the classical SUT structure for table ā5,1996 of 1996. The shades of grey
represent the logarithm of input–output transactions ranging from 1 2009R$ to 1 billion
2009R$. As expected, the use table, the final demand table, primary inputs and the supply
table’s diagonal hold most of the dominant transactions. Imports into intermediate and
final demand are several orders of magnitude smaller. In the use and import matrices,
the discernible off-diagonal represents sector-internal transactions, with the shape of the
off-diagonal determined by the product-to-industry concordance. Note that even though
supply, use and import matrices are rectangular (110 products × 55 industries), the entire
intermediate SUT block (dashed outline in Figure 5) is square (165 × 165 sectors).

Visualising an input–output table time series is not as straightforward because of the added
dimension of time. In this study, we take the final two-cycle average āN ,y and compute for
each element the sum across all years Ā

N = ∑
y āN ,y. We then sort Ā

N
in descending order,

yielding a sequence of sectors Ā
N∗

ranked in terms of their overall importance throughout
the entire time series period. We then re-arrange the year-wise data āN ,y so it is sorted
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FIGURE 5. Topographic map of Brazil’s 1996 SUT expressed in the 2005 classification.
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FIGURE 6. Topographic map of a time series of Brazil’s vectorised ninth-cycle moving-average
SUTs ā9,y∗.
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according to the sector sequence in Ā
N∗

, and plot the top 5,000 sectors of the re-sorted āN ,y∗
as a topographic map (Figure 6).

First, the accumulation of dark shades towards the top of the figure indicates that in
general, sectors that are important in 1 year stay important throughout the time series, as
one would expect. Exceptions can be detected as horizontal lines with conspicuous changes
of shade between years. Such occurrences may not always mean that a sector has undergone
a sudden and substantial expansion or contraction. Instead, such discontinuities could be
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CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 427

FIGURE 7. Analytical measures of fore- and backcast cycling in units of 105 2009R$.
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ing averages ¯̃an,y = 0.5(ãn,y + ãn−1,y)of transaction means ãn,y. Dashed line: inter-cycle differences

d̃n,y = ãn,y − ãn−1,y between transaction means ãn,y. Solid thick line: inter-cycle differences ¯̃dn,y =
¯̃an,y − ¯̃an−1,y between two-cycle moving averages ¯̃an,y

the consequences of imperfect alignment of classifications over time in our concordance
matrices (Section 3.1). Thus, a plot such as in Figure 6 is a useful visualisation tool for rapid
quality assurance of an entire input–output table time series. Second, during the early 1970s,
and between 1997 and 1999, transaction values are markedly lower compared to remaining
years, which is a result of discontinuities in the magnitude of gross output (appendix).

In order to demonstrate the effectiveness of fore- and backcast cycling, we plot in Figure 7

first the SUT transaction means ãn,y = ∑I
i=1

an,y
i
I of tables an,y as a function of the cycle-year

sequence as in Table 1. Second, we plot the inter-cycle annual difference d̃n,y = ãn,y − ãn−1,y

between successive transaction means ãn−1,y and ãn,y. For example, d̃n,y is a measure for
the difference between the year-y cycle-n solution an,y and the year-y prior-cycle solution
an−1,y. This quantity is useful in showing how with ongoing cycling, the difference between
successive SUT iterations an−1,y and an,y for the same year becomes smaller and smaller
as cycling continues. However, it does not become zero because of ongoing hysteresis
(compare Figure 2). We therefore compute and plot two-cycle moving averages ¯̃an,y =
0.5(ãn,y + ãn−1,y), and show that their differences ¯̃dn,y = ¯̃an,y + ¯̃an−1,y do become zero as
the hysteresis becomes more and more symmetrical (compare Figure 3). The inter-cycle
differences between two-cycle moving averages hence provide a good decision aid for
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how many cycles might suffice in order to arrive at a sufficiently stable final solution for
a time series. Note that for this exercise, we purposefully left out the purchasers’-price
SUT data (IBGE, 2011), because its inclusion would have led to a continuous series of
information post-1990, thus not giving rise to sufficiently obvious data gaps to bridge using
the cycling method.

A number of steps are discernible in the transaction means ãn,y of the first cycle in Figure 7.
These steps mark the transition between years where full input–output information is avail-
able and years where only some macroeconomic data such as GDP is available. During the
latter years, the input–output structure of the table does not change as significantly, leading
to small ‘ledges’ in the transaction mean curve (dotted). These ledges become drawn out as
inter-cycle averaging starts during second cycle.

The differences d̃n,y between the transaction means ãn,y of the first and second cycle are
shown by the dashed curve in the first-cycle compartment in Figure 7. The peaks mark
transitions that were step-like during the first cycle but drawn out during the second cycle.
Note that these inter-cycle differences amount to up to 105 2009R$, representing between
15% (2000s) and 30% (pre-1980) of the transaction means themselves.This example demon-
strates how fore- and backcasting yield substantially different results, which is perhaps the
best justification for why cycling and averaging as described in this article is needed.

As cycling continues, fore- and backcasting trajectories ãn,y become more and more
similar, and their inter-cycle differences d̃n,y decrease. Note that during the third cycle,
these inter-cycle differences are all below 50,000 2009R$ or below 10% of the transaction
means. During the fifth cycle, the differences are all below 30,000 2009R$. Nevertheless,
hysteresis continues, and the inter-cycle differences between the transaction means do not
disappear even during the eighth cycle.

As illustrated in Figure 2, as hysteresis becomes more and more symmetrical, two-cycle
moving averages ¯̃an,y also become more and more similar, but in contrast to the transaction

means ãn,y, their inter-cycle differences ¯̃dn,y decrease towards zero (compare Figure 3 and
thick solid curve in Figure 7). In our example, we can see that four cycles suffice in order
to obtain a satisfactory final SUT result from two-cycle moving averages.

5. CONCLUSIONS

Constructing time series of input–output tables has in the past been a labour- and time-
intensive undertaking, which partly explains the current lack of comprehensive input–output
table time series. Using the example of the Brazilian SUTs from 1970 to 2008, we have
presented a new method for constructing time series of tables, featuring a number of inno-
vations: First, we use a software tool equipped with highly automated procedures for
assembling initial estimates and constraints, flexible optimisation algorithms for matrix
balancing, a powerful graphical user interface, as well as diagnostic and visualisation tools.
Our approach is to start with an initial estimate for only 1 base year, which is then balanced
in order to obey constraints posed by superior data, and fundamental input–output balance
requirements. The base-year solution generated by the optimisation algorithm handling the
balancing is then passed on into the subsequent year’s balancing procedure as an initial
estimate. As such we are able to automatically sweep-optimise an entire time series.

Second, we have developed an effective solution to the problem of integrating data with
temporal gaps. In particular, we have dealt with the problem of hysteresis that occurs when
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CONSTRUCTING INPUT–OUTPUT TABLE TIME SERIES 429

input–output transactions are dependent on whether they are the result of forecasting or
backcasting over time. The basic idea is to use concurrent sweeps of the time series period,
alternating between fore- and backcasting, and taking concurrent averages between fore-
and back-cast solutions. We show that as such cycling continues, the time series solution
becomes more and more stable.

Whilst repeated cycling effectively irons out any discontinuities and gaps in time series
applications, analysts may want to include some sort of inter-year scaling of initial estimates
in practice. For example, when years without input–output tables available are constrained
by GDP only as in this study, value-added adjusts as a consequence, but intermediate demand
is not affected by the optimisation procedure for those years. Therefore, the proportion
between the value-added and intermediate-demand blocks may become distorted during the
initial sweeps (Wood, personal communication, 16 February 2011). Those distortions would
then be almost completely removed during further cycling. Perhaps, improved solutions
would be to iteratively pre-scale the initial estimate (Lenzen et al., 2010a) or to start with a
set of separate initial estimates constructed via regression (Wood, 2011). We did not discuss
such variants in detail in order to clearly distinguish the effects of hysteresis as the main
focus of this article.

The method proposed here has clear advantages also over existing parallel methods
that could potentially deal with the hysteresis problem, in that our method works even with
supporting data that are grossly insufficient (for example, too aggregated or too incomplete)
for constructing the required harmonised base- and final-year initial estimates.

We believe our research to be of use for analysts who wish to construct time series of any
kind of contingency tables (for example, input–output tables, SUTs, environmental or social
satellite accounts, etc.), and who face a limited time and labour budget. Our hope is that with
increasing use of automated tools such as the one described in this article, such time series
will be constructed more comprehensively, more frequently and more timely in the future.
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APPENDIX

There exist major conceptual differences in the purchasers’-price SUT time series (right;
IBGE, 2011) and in the basic-price SUT time series (Figure A1; IBGE, 2008; Wachsmann
et al., 2009). In the purchasers’-price SUT time series, margins m, net taxes on products tp,
and imports M, are appended as vectors below the supply block V in order to facilitate the
product balance xc∗ . This is because in the purchasers’-price SUT time series, margins, net
taxes and imports are missing as explicit complements to value added, but rather instead
being incorporated into the use (U) and final demand matrices (y). The industry balance xi

is unaffected by these conceptual differences, though.
As a consequence, use and final demand matrices in the purchasers’-price SUTs cannot

be used to inform our basic-price time series. We have hence only used the data items shown
shaded in Figure A1.

FIGURE A1. Supply-use system in the purchasers’-price SUT time series (right; IBGE, 2011) and
in the basic-price SUT time series (left; IBGE, 2008; Wachsmann et al., 2009).
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FIGURE A2. Ratio of gross output to GDP in the source data sets from Wachsmann et al. (2009), the
official Brazilian SUTs (IBGE, 2011) and the official input–output tables (Tabelas Insumo-Produto,
TIP, IBGE, 2010).

In addition, there are a number of additional discontinuities both in the purchasers’-price
SUT time series and the basic-price time series used byWachsmann et al. (2009) (FigureA2).
The purchasers’-price SUTs are available in different formats and classifications for the
years 1990–1994, 1995–1999 and 2000–2008. As a result, the ratio between gross output
and GDP, and hence the ratio between data components such as the supply matrix and the
value-added block, are subject to discontinuities. For the three blocks listed above, these
ratios are 2.0, 1.5 and 1.75, respectively (see ×symbols).

These discontinuities have consequences for matrix balancing, as well as for analytical
results obtained through, amongst other techniques, the classical Leontief demand-pull
calculus or SDA. The system feedback inherent in intermediate demand is much lower for
the years 1995–1999 compared to the remaining periods, and hence multipliers and SDA
terms can be expected to be lower for these years.

Similar differences exist within the time series constructed by Wachsmann et al. (2009):
the 1970, 1975 and 1980 SUTs are constructed from raw data in completely different
classifications, and at least the gross-output-to-GDP ratios are quite different for 1970 and
1975.
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