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Summary 
To simulate carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes across Europe using 
the selected process-based models (ORCHIDEE, LPJ-GUESS and JSBACH), input datasets and 
additional data are required. These datasets are needed either to calibrate key model parameters or 
to validate the simulated fluxes. This deliverable thus consists of the description of the collected data 
for this modelling effort. Apart from the climate data, it is mostly a collection of existing datasets 
derived during related projects and community efforts rather than the processing of specific raw data. 
The main input datasets gathered are: 

● Climate data that correspond to the ERA5-land reanalysis from ECMWF (at 11 km resolution) 
further bias corrected using the CRU monthly data. The product was first derived during the 
VERIFY project and has been extended in EYE-CLIMA to cover recent years (up to 2023). 

● A European subset of the HILDA+ (HIstoric Land Dynamics Assessment+) dataset on land 
use/land cover (LULC) change. HILDA+ is a global dataset starting in 1960 at 1 km spatial 
resolution, integrating multiple open data streams (from high-resolution remote sensing, 
long-term land use reconstructions and statistics). 

● Soil organic carbon stocks from the SoilGrids database used in ORCHIDEE to initialise the 
model soil C content. For soil physical properties, we will try to use the Land Use and Cover 
Area frame Statistical survey (LUCAS) topsoil data, although currently, the LPJ model uses 
the WISE dataset. 

● Cropland management datasets: the MIRCA2000 global dataset with a spatial resolution of 
0.083° will be used to provide both irrigated and rain-fed crop harvest areas for all major 
food crops. For reconstructing the history of anthropogenic nitrogen inputs to the terrestrial 
biosphere, a comprehensive and synthetic dataset from Tian et al. (2022) will be used.  

● Grassland management datasets are still being gathered by the modelling groups in order to 
derive spatial and temporal information about cutting and grazing. For this, livestock density 
distribution maps for different livestock categories are key and they will be taken from the 
Gridded Livestock of the World dataset (GLW2; Robinson et al., 2014).  

● Forest management and evaluation datasets: different datasets assembled in previous 
projects, based on National Forest Inventory (NFI) data and remote sensing data, have been 
gathered to calibrate and evaluate the forest demography of ORCHIDEE and LPJ-GUESS. 
Recent dataset for Europe from Pucher et al. (2022) are also being used (especially forest 
age classes and forest height). 

 
The EYE-CLIMA model input datasets are, however, a living structure, growing out of a collaboration 
between the three modelling groups. As such, the collection of data and this document will continue 
to be updated as user needs evolve.   
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1. Introduction 

For the quantification of greenhouse gas (GHG) surface fluxes within the EYE-CLIMA project, three 
process-based land surface models are going to play a central role. They integrate our physical 
understanding of the land surface processes controlling these fluxes and are used to extrapolate and 
interpolate knowledge, obtained from measurements and theory, spatially and temporally. The 
application of models requires, however, numerous datasets to parameterise the models and validate 
the results. Climate, soil, management (for cropland, forest and grassland) and land use/land cover are 
the main driving data that are required for modelling the carbon and nitrogen dynamics (namely CO2, 
CH4 and N2O fluxes). Therefore, the first aim of WP2 (Task 2.1) was to collect these data and provide 
them to the other tasks of WP2. The collection includes data needed to perform the simulations but also 
to improve and validate model outputs.  

A first version of the input dataset was provided earlier in the project with the deliverable D2.1 (First 
input driving datasets for process-based models). The current deliverable provides an update of the 
collected data that defines the final version of the input dataset. As such it thus includes not only the 
description of the updated datasets, but it also recalls the description of the first input datasets. 
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2. Meteorological forcing dataset  

Two input datasets were considered as potential meteorological forcing for the process-based models 
used in the EYE-CLIMA project: 

● A product based on the ERA5-land climate reanalysis of ECMWF (European Center for 
Medium-Range Weather Forecast) with an additional bias correction, at the spatial resolution 
of around 11 km. 

● A new reanalysis produced also by ECMWF specifically for Europe: the Copernicus Regional 
Reanalysis for Europe (CERRA), at the spatial resolution of 5.5 km: 
https://climate.copernicus.eu/copernicus-regional-reanalysis-europe-cerra.   

Given that the CERRA product only starts in 1983 (which is sub-optimal to run the model over the 
historical period for CO2) and that some preliminary analyses showed precipitation biases at some sites, 
we decided for the first round of simulations of EYE-CLIMA to use the ERA5-land bias corrected product. 
For the second round, we chose to keep using it, because the CERRA product will only be extended 
backward in time during 2025 (see the above website for CERRA).  

The ERA5-land bias corrected product was first produced in the VERIFY project and further extended in 
the CoCO2 project. In 2020, the VERIFY project, through the combined efforts of the University of East 
Anglia, ECMWF, and LSCE, processed high-resolution meteorological forcing data from the ERA5-Land 
dataset at 3-hourly resolution across Europe for the historical period: 1901 to 2019. The ERA5-Land has 
an operational status that guarantees that data for the previous year will be available by April/May of the 
current year.   

The ERA5-Land reanalysis was then re-aligned with the CRU observational time series dataset. The CRU 
TS dataset was developed and has been subsequently updated, improved and maintained with support 
from a number of funders, principally the UK's Natural Environment Research Council (NERC) and the 
US Department of Energy. This procedure changes the monthly means of each 0.5° pixel to match that 
of CRU observations; consequently, the regional monthly-averaged climate is that of the CRU, while the 
sub-monthly and higher spatial resolution come from ERA5-Land. During the CoCO2 project, such a 
dataset was extended to the year 2021. Within EYE-CLIMA, we have re-aligned the whole time series 
(from 1901 onwards) and not only the last year, 2023. The CRU dataset was recently updated to V4.08 
on the 27 June 2024, a release that covers the period 1901-2023. More information on the new CRU 
version can be found at:  

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/Release_Notes_CRU_TS_4.07.txt 

The re-aligned dataset is available from the VERIFY THREDDS server: 

https://verifydb.lsce.ipsl.fr/thredds/verify/VERIFY_INPUT/CRUERA_V4.0/catalog.html 

The most complete set of meteorological forcing are available at sub-daily (3-hourly) time steps but also 
some variables are available at daily and monthly time steps. The list of available variables is provided in 
the table below. To access the THREDDS server, you need a login with a username and password: 

Username: vdbuser 

Password: V3r1fy 

(Note that several other European projects have asked the permission to use this dataset.) 

In order to illustrate some features of this dataset, we provide below two figures for the annual mean 
and July mean of the surface air temperature (Figure 1) and the precipitation (Figure 2) comparing the 
last two years of the dataset (2022 and 2023). For the temperature, we see that the year 2023 was on 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/Release_Notes_CRU_TS_4.07.txt
https://verifydb.lsce.ipsl.fr/thredds/verify/VERIFY_INPUT/CRUERA_V4.0/catalog.html
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average similar to 2022 with a mean temperature across the European domain of 8.88°C for 2023 and 
8.75°C for 2022. For July, year 2022 was slightly warmer than July 2023 (19.6°C for 2022 and 19.0°C 
for 2023). For the precipitation, the annual mean was higher in 2023 than in 2022 (2.1 vs 1.8 mm/day). 
This was also the case in July.  

 
Table 1: List of the variables and time steps in the dataset. 

Variable 3-hourly Daily Monthly 
Tair X X X 
Tmax X X  
Tmin X X  
Wind_N & Wind_E X X  
WS X X  
Psurf X X  
LWdown X X  
SWdown X X X 
Qair X X  
Rainf X   
Snowf X   
Precipitation X X X 
RH X X  

 

Figure 1: Illustration of the surface temperature forcing used within EYE-CLIMA (derived from ERA5-
Land with CRU monthly bias correction) for two years, 2022 (top) and 2023 (bottom) over Europe. The 
left column shows the annual mean and the right column the July mean. 
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Figure 2: Illustration of the precipitation forcing used within EYE-CLIMA (derived from ERA5-Land with 
CRU monthly bias correction) for two years, 2022 (top) and 2023 (bottom) over Europe. The left column 
shows the annual mean and the right column the July mean. 

 

3. High-resolution land cover and land use data 

3.1 HILDA+ land use/cover dataset 

We proposed to use a European subset of the HILDA+ (HIstoric Land Dynamics Assessment+) global 
dataset on land use/land cover (LULC) change (Winkler et al., 2020). HILDA+ is a global dataset of land 
use/cover change starting in 1960 at 1 km spatial resolution and annual temporal resolution. It is based 
on a data-driven reconstruction approach and integrates multiple open data streams (from high-
resolution remote sensing, long-term land use reconstructions and statistics). It covers six generic land 
use/cover categories: 1: Urban areas, 2: Cropland, 3: Pasture/rangeland, 4: Forest, 5: Unmanaged 
grass/shrubland, 6: Sparse/no vegetation. Forest generic type is further refined into different plant 
functional types (see Figure 3). 

Starting with a FAO-calibrated base map (derived from ESA Copernicus LC100 2015), HILDA+ allocates 
land use/land cover transitions iteratively for each time step (annually) and for each country along a 
backwards-looking time loop on a 1×1 km grid. Net change magnitudes are based on national FAO land 
use and population statistics. Gross change magnitudes are calculated from mean transition matrices, 
which are extracted from a time series of satellite-derived land use/land cover maps. The change 
allocation depends on class probability maps (mean class fractions) generated from year- and region-
specific remote sensing-based land use/land cover maps.  

The data was not updated since the first report and the product thus only covers up to 2020. For the 
following years (up to 2023), we use the land cover distribution of 2020. 
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Figure 3: Land use/cover from HILDA+ to be used within EYE-CLIMA. 

3.2 Mapping HILDA+ to ORCHIDEE Plant Functional Types  

From the HILDA+ product, we had to map the generic land cover into the specific Plant Functional Types 
(15 PFTs) of the ORCHIDEE land surface model. The approach consists of defining a cross-walking table 
(CWT) between the generic land use/land cover classes of HILDA+ and the 15 PFTs of ORCHIDEE, using 
also additional information such as: i) a climate zone definition from Köppen-Geiger, ii) the C4 grassland 
fraction from Still et al. (2019) and the C4 crop fraction from LUH2 historical dataset. The figure below 
illustrates how such CWT is defined with the “Still” and “LUH2” additional maps.  

The process with the different maps that are used as well as the resulting PFTs is illustrated on a 
dedicated webpage of the ORCHIDEE model development:  

https://orchidas.lsce.ipsl.fr/dev/verify/hilda.php  

 
Figure 4: Cross-walking table from HILDA+ classes to ORCHIDEE PFTs.  

The figure 5 illustrates the spatial distribution and temporal evolution of one PFT of ORCHIDEE 
(Temperate Broadleaf Summer-green forest, PFT6) following the use of HILDA+ classes. We notice a 
significant increase in this forest PFT at the expense of crops and natural grassland. 

https://orchidas.lsce.ipsl.fr/dev/verify/hilda.php
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Figure 5: Spatial distribution and temporal evolution of the Temperate Broadleaf Summer-green forest 
(PFT6) of ORCHIDEE following the use of the HILDA+ land use/land cover classes and the cross-walking 
approach defined above.  

3.3 Mapping HILDA+ to LPJ-GUESS Plant Functional Types  

The LULC information required in LPJ-GUESS primarily includes four vegetation types: cropland, pasture, 
managed forest, and natural vegetation. To align with this classification, we aggregated the unmanaged 
forest and unmanaged grass/shrubland from the HILDA+ data set (Winkler et al., 2020) into the “natural 
vegetation” category in LPJ-GUESS, and regridded it from 0.01° to 0.125° resolution across Europe. 
Likewise, the other forest, pasture/rangeland, and cropland classes in HILDA+ were aggregated to 
“managed forest”, “pasture” and “cropland” categories, respectively, at the same resolution (Table 2).  

To initialize the timing of clear-cutting across tree species in managed forests, we used the European 
forest age data set from Pucher et al. (2022). Since Pucher et al. (2022) describe some forest ages 
ranging between 100 and 140 years, the aggregated LULC data from HILDA+ was further extended back 
to 1870 to ensure consistency. Figure 6 below illustrates the spatial distribution and time series of the 
four vegetation types after processing HILDA+ and forest age data at 0.125° resolution. In 2020, cropland 
was the dominant vegetation type in Europe, covering an estimated 242 Mha, followed by natural 
vegetation (224 Mha), managed forest (210 Mha), and pasture (105 Mha). 

Table 2: Categorizing land use/cover from HILDA+ to LPJ-GUESS at 0.125° resolution 

Land use/cover categories in HILDA+ (from) Land use/cover categories in LPJ-GUESS (to) 
Urban Urban 
Cropland Cropland 
Pasture/Rangeland Pasture 
Evergreen needle leaf forest (unmanaged) 

Natural Vegetation 

Evergreen broad leaf forest (unmanaged) 
Deciduous needle leaf forest (unmanaged) 
Deciduous broad leaf forest (unmanaged) 
Mixed forest (unmanaged) 
Grass/Shrubland (unmanaged) 
Other forest (managed) Managed forest 
Sparse/no vegetation Barren 
Water N/A 
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Figure 6: Maps of land use/cover fractions of the remapped HILDA+ data sets in LPJ-GUESS (averaged 
over 2011-2020), and total areas in each land use/cover class across Europe from 1870-2020. 

3.3 Mapping HILDA+ to JSBACH Plant Functional Types  

We mapped HILDA+ types into JSBACH's non-peatland plant functional types (PFTs) according to Figure 
7. The status of HILDA+ in 2020 was used to represent the current-day non-peatland PFT distribution. 
The target JSBACH PFTs are given in Table 3. The main deviations from ORCHIDEE's respective mapping 
(Figure 4) are the cross-walkings of HILDA+ classes 40 and 45 at the Boreal zone where the classes are 
divided into two classes instead of three. The other main deviation is the HILDA+ class "Other land" that 
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contributed to the "area inhabitable for vegetation" in JSBACH that comprises a complement of maximum 
vegetation ratio (veg_ratio_max). 

 

Figure 7. Mapping of HILDA+ -types to JSBACH PFTs.  Overall, the classes are divided into PFT 
combinations according to the climate zone definition from Köppen-Geiger. 

Table 3. Plant functional types in JSBACH-HIMMELI 

1: Glacier   12: C3 grass   
2: Tropical evergreen trees   13: C4 grass   
3: Tropical deciduous trees   14: Pasture   
4: Extra-tropical evergreen trees   15: C3 pasture   
5: Extra-tropical deciduous trees   16: C4 pasture   
6: Temperate broadleaf evergreen trees   17: Tundra   
7: Temperate broadleaf deciduous trees   18: Swamp   
8: Coniferous evergreen trees   19: Crops   
9: Coniferous deciduous trees   20: C3 crop   
10: Raingreen shrubs   21: C4 crop   
11: Deciduous shrubs   22: Peatland  

 

3.4 Wetland spatial and temporal extent  

For the circumpolar current-day wetland extent in JSBACH-HIMMELI, we used GLWD.v2 (Lehner et al., 
2024) wetland classes Arctic/boreal non-forested peatland, Temperate non-forested peatland and 
Tropical non-forested peatland (class numbers 23, 25 and 27, respectively). 
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For the European areal coverage of the EU-CORINE land cover (CLC, 
https://land.copernicus.eu/en/products/corine-land-cover), the CLC classes “bogs” and “inland marshes” 
are interpreted as wetland. 

For Finland, where intense drainage of pristine peatlands for forestry and agriculture took place during 
the 20th century, we used the detailed data from GTK (Geological Survey of Finland, 
https://tupa.gtk.fi/paikkatieto/meta/suotyypit_ja_turvekankaat.html), which was recently published (2023) 
and contains remaining peat stocks both in managed and pristine peatlands. The land cover classes are 
detailed by various, mainly plant species distribution based, peatland type characteristics and state of 
drainage and current land use. We identified the classes which correspond to pristine peatlands by 
vegetation and wetness, and applied those as wetlands in JSBACH-HIMMELI (Figure 8). With this 
classification the wetland area in Finland is about 27 000 km², while according to Corine it is about 24 
000 km².  

 

Figure 8. Left: Managed and pristine peatland land cover types in Finland (figure adopted from Ministry 
of Environment, Report 2023:33) and Right: Peatland land cover types interpreted as wetlands by FMI. 

The wetland fraction composite was first mapped to the target grid. Secondly, the grid cell specific 
wetland fractions were subtracted from the non-wetland JSBACH PFTs in the following order: C3 grass, 
Raingreen shrubs/Deciduous shrubs, Extra-tropical evergreen trees/Coniferous evergreen trees, 
Temperate broadleaf deciduous trees and Pasture. If the fractional coverage of wetlands exceeded the 
fraction of C3 grass in the grid-cell the remainder was subtracted from the respective shrubs PFT and 
so on. The reasoning behind the order of the subtraction, is that the relatively open and treeless mires 
likely originally got mapped to the most open Grass/Shrubland class in HILDA+. 

In addition to the constant fractional distribution of wetlands on peat soils, we use the monthly inundation 
fraction data WAD2M version 2.0 (Zhang et al., 2021) to simulate methane emissions from inundated 

https://tupa.gtk.fi/paikkatieto/meta/suotyypit_ja_turvekankaat.html
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soils. The areal fraction of wetlands on peat soils (as defined above) in each grid cell is first subtracted 
from the monthly inundated fraction and the remainder is assigned as inundated soil fraction. The land 
area after removing the wetlands on peat soils and the varying inundated fraction have been assigned 
for upland mineral soils. 

4. Soil organic carbon stocks and soil properties 

4.1 Soil properties 

Although the three models (ORCHIDEE, LPJ-GUESS and JSBACH) are using different soil properties 
datasets in their current settings, we will try to harmonise them in the course of the project towards the 
use of a common dataset. We will use the topsoil physical properties for Europe based on the Land Use 
and Cover Area frame Statistical survey (LUCAS) topsoil data. These data are downloaded from the 
following website: https://esdac.jrc.ec.europa.eu/. 

LUCAS aimed at collecting harmonised data about the state of land use/cover over the European Union 
(EU). Among these 200k land use/cover observations selected for validation, a topsoil survey was 
conducted at about 10% of these sites. Topsoil sampling locations were selected to be representative of 
the European landscape using a Latin hypercube stratified random sampling, considering CORINE land 
cover 2000, the Shuttle Radar Topography Mission (SRTM) DEM and its derived slope, aspect and 
curvature. Several soil properties were predicted using hybrid approaches like regression kriging. For 
those datasets, topsoil texture and related derived physical properties were predicted. Regression 
models were fitted using, along with other variables, remotely sensed data coming from the MODIS 
sensor. The high temporal resolution of MODIS allowed the detection of changes in the vegetative 
response due to soil properties, which can then be used to map soil feature distribution. The prediction 
of intrinsically co-linear variables like soil texture required the use of models capable of dealing with 
multivariate constrained dependent variables like Multivariate Adaptive Regression Splines (MARS). 
Cross-validation of the fitted models showed that the LUCAS dataset constitutes a good sample for 
mapping purposes leading to cross-validation R2 between 0.47 and 0.50 for soil texture and normalised 
errors between 4 and 10%.  

This dataset provides the following soil properties at 500 m resolution, for the geographical coverage: 
European Union (EU) plus Balkan countries, Switzerland and Norway:   

• Clay content (%) in topsoil (0-20cm) modelled by Multivariate Additive Regression Splines  
• Silt content (%) in topsoil modelled by Multivariate Additive Regression Splines  
• Sand content (%) in topsoil modelled by Multivariate Additive Regression Splines  
• Coarse fragments (%) content in topsoil modelled by Multivariate Additive Regression Splines  
• Bulk density derived from soil texture datasets (obtained from the packing density and the 

mapped clay content following the equation of Jones et al., 2003) 

With the ORCHIDEE model, although we are using the global USDA soil texture map as the standard, a 
test with the LUCAS dataset will be made to see the impact of different soil properties on the soil water 
holding capacity and consequently on the different GHG fluxes. 

For the LPJ–GUESS model, soil physical property data sets are the same as those used in the first round 
of simulations.  

https://esdac.jrc.ec.europa.eu/
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In addition to the plant functional types, the HILDA+ classification guided the attribution of a subset of 
surface parameters in JSBACH-HIMMELI. For that aim, HILDA+ classes were linked to USGGD land cover 
classes (Table 4). 

Table 4. Linking HILDA+ to USGGD land cover classes 

HILDA+ land cover class USGGD land cover class 
11 Urban 47 Dry Woody Scrub 
22 Cropland 94 Crops, Grass, Shrubs 
33 Pasture 56 Forest and Field 
40 Forest Unknown/Other 24 Mixed Forest 
41 Forest EvNe 21 Conifer Boreal Forest 
42 Forest EvBr 6 Evergreen Broadleaf Forests 
43 Forest DeNe 4 Deciduous Conifer Forest 
44 Forest DeBr 5 Deciduous Broadleaf Forest 
45 Forest Mixed 24 Mixed Forest 
55 Grass/shrubland 40 Cool Grasses and Shrubs 
66 Other land 8 Bare Desert 

The attribution of parameter values to the USGGD classes is given in Hagemann et al. (2002; 
http://hdl.handle.net/11858/00-001M-0000-002B-539B-6). For soils, we used Tanneberger et al. (2017) 
peatland extent data to adjust soil parameter values to account for the peat fraction within each grid cell. 
For the land area beyond the coverage of the Tanneberger et al. (2017) peatland map, we used HWSD2 
(Harmonized World Soil Database v2, FAO & IIASA, 2023) peatland extent. Parameters from Hagemann 
and Stacke (2015) were used to describe the soil properties, e.g. soil porosity, saturated hydraulic 
conductivity, field capacity and wilting point and saturated moisture potential. However, to mitigate the 
impact of peat soil properties to the overall soil moisture modelling, instead of using only peatsoil 
parameter values, we used the average values of Peatsoil and Loamy Sand classes for peatland fractions 
of each grid-cell. Moreover, the soil parameters of Loamy Sand from Hagemann and Stacke (2015) were 
used for all non-peat soil fractions. 

4.2 Soil organic carbon stocks 

With the ORCHIDEE model, we use the SoilGrids database (see https://www.isric.org/explore/soilgrids; 
Ribeiro and Batjes (2019) ; Poggio et al. (2021)) to initialise the model soil organic carbon content (and 
its vertical distribution) and then we let the model equilibrate with a long spin-up simulation of thousands 
of years, recycling a 10-year climate forcing. Figure 9 illustrates the soil organic carbon content for the 
upper 30 cm of soil as estimated by the SoilGrids product. Note that we also have optimised key soil 
organic matter decomposition parameters from the CENTURY module (used in ORCHIDEE) so that the 
SOC content after the spin-up remains close to that of the SoilGrids database. This SOC content is also 
used to weigh soil dry and solid thermal conductivities, thermal capacity and to correct the value of the 
porosity used to calculate the saturated conductivity and the saturation ratio. With ORCHIDEE, the 
SoilGrids data are thus used both for the initialisation and the evaluation after the spin-up.  

 

http://hdl.handle.net/11858/00-001M-0000-002B-539B-6.
https://www.isric.org/explore/soilgrids
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Figure 9: Maps of soil organic carbon stock (in t/ha) from the SoilGrids dataset. 

With the JSBACH model, soil organic carbon stocks were accumulated in a long spin-up simulation of 
three thousand years, using as an input a period of climate drivers in a loop, and corresponding 
simulation of NPP and water table levels. The peat accumulation is a continuous process in water-logged 
conditions, and thus the simulation was not attempted to run until equilibrium, rather the simulation was 
ended when peat depths reach current-day levels.  

Like the JSBACH model, soil organic carbon stock in LPJ-GUESS was computed as the long-term 
accumulation under the potential natural vegetation with a 1000-year spin-up simulation.   

5. Cropland management datasets  

For LPJ-GUESS, the cropland data sets are the same as those used in the first round of simulation with 
thus no specific updates. These datasets will also be used with the ORCHIDEE model as much as 
possible. Currently, the ORCHIDEE model team is integrating the cropland specificities developed in a 
separate branch, ORCHIDEE-CROP (Wu et al., 2016) into the main version of the model that includes the 
nitrogen cycle and that will be used to simulate the three GHG fluxes. The first set of ORCHIDEE 
simulations for EYE-CLIMA was made with a version that only accounts for generic C3 and C4 crops and 
thus using the FAO dataset (FAOSTAT, 2023) for the spatial distribution of these two “photosynthetic-
pathways” of crops. Unfortunately, the second round of simulation with ORCHIDEE will still be based on 
the generic crops as the version with specific crops is not fully optimized and operational yet. However, 
before the end of the project, ORCHIDEE will use, like LPJ-GUESS, major crop functional types for Europe 
and thus use the datasets described below (also described in the first version of the input dataset 
deliverable). 

5.1 Crop growth distribution dataset  

MIRCA2000 (Portmann et al., 2010) is a global dataset with a spatial resolution of 5 arc minutes (=0.083°) 
which provides both irrigated and rain-fed crop harvest areas of 26 crop classes around the year 2000. 
The dataset includes all major food crops (wheat, maize, rice, barley, rye, millet, sorghum, soybean, 
sunflower, potato, cassava, sugarcane, sugar beet, oil palm, canola, groundnut, pulses, citrus, date palm, 
grape, cocoa, coffee, other perennials, fodder grasses, other annuals) as well as cotton. 
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At present, cropland in LPJ-GUESS is characterised by six crop functional types (CFTs): two temperate 
C3 crops with spring and autumn sowing dates, a tropical C3 crop representing rice, a C4 crop 
representing maize, and two N-fixing grain legumes representing soybean and pulses. Considering the 
importance of barley, pulses (e.g., beans and peas), rapeseed, and maize in the overall agriculture in 
Europe (e.g., harvest areas and total production; FAOSTAT, 2023), we thus aggregated these main food 
crops from MIRCA2000 to CFTs in LPJ-GUESS from 0.083° to 0.125° resolution for better accounting 
for agricultural production in this region. The details on how we mapped the MIRCA2000 crops to the 
LPJ-GUESS CFTs are given in Table 5 and Figure 10 below. 

Our estimated total areas of six CFTs in Europe are in general higher than the statistics from FAO (Figure 
11), most likely due to the inclusion of parts of areas in Turkey and Russia across the European domain 
in our estimation (Figure 10). The overestimation is expected to be largely diminished when these two 
countries are removed from the comparison. 

Table 5: Categorizing crop types from MIRCA2000 to LPJ-GUESS at 0.125° resolution 

Crop classes in MIRCA2000 
(from) 

Crop functional types (CFTs) in LPJ-GUESS 
(to) 

Potatoes, Sugar beet, Sunflowers C3 crops sown in spring (representing spring 
wheat) 

Barley, Rapeseed, Rye, Wheat C3 crops sown in autumn (representing winter 
wheat) 

Maize, Millet, Sorghum C4 crops (representing maize) 

Rice Rice 

Soybean Soybean 

Pulses Pulses (representing faba bean) 

Others (e.g., Groundnut, Oil palm, Sugarcane, 
Date palm, Citrus, Cocoa, Coffee, Cassava) 

N/A 

 

5.2 Nitrogen fertilisation dataset 

Tian et al. (2022) developed a comprehensive and synthetic dataset for reconstructing the History of 
anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere. The HaNi dataset takes advantage of 
different data sources in a spatiotemporally consistent way to generate a set of gridded high-resolution 
N input products from the preindustrial period to the present (1860-2019). The HaNi dataset includes 
annual rates of synthetic N fertilizer, manure application/deposition, and atmospheric N deposition on 
cropland, pasture, and rangeland at a spatial resolution of 0.083°. 
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Figure 10: Maps of the rain-fed crop fractions, aggregated from MIRCA2000 crops to CFTs in LPJ-
GUESS across Europe at 0.125° resolution. 
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Figure 11: Simulated crop-specific total areas (rain-fed and irrigated; Mha) by combining HILDA+ with 
MIRCA2000 datasets over the historical period across Europe in LPJ-GUESS. The statistics from FAO 
between 1992-2020 used for comparison are shown in dashed lines 
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We first aggregated the HaNi classes NH4
+ and NO3

- N fertilizer to the “synthetic N fertilizer” category 
from 0.083° to 0.125° resolution across European cropland and pasture (Table 6). Since the HaNi does 
not provide the crop-specific N input rates, we subsequently separated the total N application rates in 
each grid cell to each crop (Figure 12) using the crop fraction information from the MIRCA2000 dataset. 
Due to the unavailable information for the timing of N fertilizer application on a regional scale, we 
assumed with LPJ-GUESS that synthetic fertilizer application takes place at three crop development 
stages — sowing, halfway through the vegetative phase, and flowering — with different application rates 
depending on crop type. All manure is applied to crops at the time of sowing as a single application to 
reflect real-world practices that account for the time required for manure N to be made available to 
plants. 

We compared the total N inputs from the HaNi with the statistics from FAO. Preliminary results indicate 
that our estimates of N fertilizer rates and manure application to agricultural soils in Europe are in general 
agreement with the FAO-based records in terms of both magnitude and long-term trends (Figure 13). 

Table 6: Categorizing N input types from HaNi to LPJ-GUESS at 0.125° resolution in Europe 

N input classes in HaNi 
(from) 

N fertilization types in LPJ-GUESS 
(to) 

NH4
+ N fertilizer in cropland 

Synthetic N fertilizer in cropland 

NO3
- N fertilizer in cropland 

Manure application in cropland Manure application in cropland 

NH4
+ N fertilizer in pasture 

Synthetic N fertilizer in pasture 

NO3
- N fertilizer in pasture 

Manure application in pasture N/A 

Manure deposition in pasture 
In the model, 25% of N in the harvested AGB on 
pasture is returned to the soils to simply account 
for the manure deposition from grazing animals 

Manure deposition in rangeland N/A 
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Figure 12: Maps of N fertilizer and manure applied to the three main crop types in Europe (tons N per 
grid cell averaged over 2010-2019), remapped from the HaNi dataset at 0.125° resolution for LPJ-
GUESS. 
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Figure 13: The estimated total N inputs to cropland and pasture from the HaNi dataset between 1860 
and 2019 across Europe. The statistics from FAO between 1992-2019 used for comparison are shown 
in dots. 

6. Grassland management datasets 

In ORCHIDEE, there is a separate branch for grassland (as is the case for cropland) ORCHIDEE-GM 
(Grassland Management, Chang et al., 2013), that describes the impact of two grassland management 
practices (cutting and grazing) on grassland ecosystem dynamics and, in particular, on the exchange of 
carbon and water with the atmosphere. These developments were inspired (and partly taken) by a 
grassland model (PaSim, version 5.0). Current efforts are ongoing to integrate the grassland branch 
back into the main version of ORCHIDEE that includes the nitrogen cycle. In parallel, a second module 
was developed, CAMEO, in the ORCHIDEE model to describe the impact of agro-systems on the emission 
of ammonia and more generally on nitrogen transfers within agro-systems (Beaudor et al., 2023). Such 
module needs as main inputs the livestock density for each model grid cell.  

In the second set of simulations, we still have not used the grassland management datasets, but as an 
update before the end of the project, the grassland management module and the agro-system module 
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will be activated. For these modules, we thus need the livestock distribution in Europe as livestock 
feeding and bedding needs are calculated within each grid cell from livestock density distribution maps, 
for different livestock categories. The distribution of each livestock category will be taken from the 
Gridded Livestock of the World dataset (GLW2; Robinson et al., 2014). This dataset can be accessed 
from the FAO website: https://www.fao.org/livestock-systems/en/. As an illustration, Figure 14 provides 
the distribution of cattle over the world, while 8 categories of livestock are reported in this dataset (Goats, 
Ducks, Buffaloes, Sheeps, Horses, Cattle, Pigs, and Chickens). From the livestock density in each grid 
cell, the grassland but also the cropland NPP will be used to provide the feeding and bedding needs (see 
Beaudor et al., 2023). 

 

Figure 14: Illustration of the Cattle global distribution from the FAO website: 
https://www.fao.org/livestock-systems/en/. 

In LPJ-GUESS, pasture is simulated with a uniform management intensity across all European grid cells. 
For instance, we assume that 50% of aboveground biomass is removed from pasture each year to 
broadly represent the effects of grazing. To parameterize internal manure deposition from livestock on 
grazing pastures, 75% of the harvested N from aboveground biomass is assumed to return to the soil 
annually. Given the widespread use of chemical N fertilizer on European agricultural soils, pasture 
receives a constant N application rate of 20 kg N ha-1 per year since 1990 (Tian et al., 2022). 

For JSBACH, there is currently no specific need for grassland management data for the simulation of 
wetland CH4 emissions. 

7. Forest management datasets 

For forests, ORCHIDEE and LPJ-GUESS are at different stages in terms of using forest management 
data. For ORCHIDEE, the second set of simulations planned for early 2025, will still not use the forest 
management module (diameter and age classes as well as tree height dynamics, described in Naudts et 
al., 2015) that has been only recently included in the trunk version of ORCHIDEE and coupled with the 
nitrogen cycle, given that some parameterisations are still under adjustment (mainly final adjustments 
for the mortality due to self-thinning intensity). Note that forest management in Europe significantly 
varies between countries and its description is thus difficult to parameterise given that many countries 
do not have clear-felling but rather complex thinning practices. However, such a demography-based 
version will be used for the CMIP7-FastTrack exercise at the end of 2025, and we will thus be able to 

https://www.fao.org/livestock-systems/en/
https://www.fao.org/livestock-systems/en/
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provide an updated ORCHIDEE run for the EYE-CLIMA GHG synthesis (WP4). In this context, we have 
gathered different datasets that are currently used for ORCHIDEE calibration and evaluation or that will 
be used in the next round of simulation directly as inputs. First, we are trying to valorise in-situ data that 
were produced and collected during various projects and, in particular, the VERIFY precursor project, 
through a dedicated activity on forest data collection. Second, we are trying to use spatial products, 
combining in situ and remote sensing observations, as described for example in Pucher et al. (2022).  

For LPJ-GUESS, clear-cutting harvest is applied to managed forest ecosystems to match present-day 
forest age structure described in Pucher et al. (2022). Following a clear-cut event, all tree species in the 
regrowth phase undergo a fixed thinning intensity, determined based on Reineke’s self-thinning rules, 
where trees of all sizes and ages are cut equally. To prevent tree mortality caused by the model’s self-
thinning functionality, we assume that these forests are managed under extensive thinning practices 
(the model’s default setup), with the target relative density index set at 0.85 in the simulations. This 
index is defined as the ratio of tree density and maximum density, where higher values indicate lower 
thinning intensity (Lindeskog et al., 2021). Thinning may be triggered when tree density reaches the 
target relative density index. 

7.1 In situ forest datasets 

We first choose to valorise the data collected during the previous EU project, VERIFY, that had also a 
specific focus on European greenhouse gas budgets. The data have not been transferred to the EYE-
CLIMA data portal, but they are taken directly from the VERIFY database 
(https://webportals.ipsl.fr/VERIFY/Ressources_2D.html). For a detailed description of the different 
datasets, we refer to specific VERIFY deliverable that are accessible from: 
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-
terrestrial-co2-sources-and-sinks-and-carbon-stock. We thus provide below a brief note on these 
products. 

In-situ National Forest Inventory (NFI) data 

More and more countries in Europe are setting up NFI programmes, where especially Central/Eastern 
European countries are changing from inventories based on Forest Management Planning systems 
towards statistically based NFI programmes. However, NFI data are considered politically sensitive, and 
in-situ plot data are not always shared. Gradually, this attitude is changing with more and more countries 
publishing their raw data on the internet or making them available on request for specific purposes and 
projects. Figure 15 illustrates the location of the different NFI data that were collected; there is a clear 
gradient of decreasing availability of raw NFI data from West to East in Europe. The collected raw data 
are thus available to both ORCHIDEE and LPJ-GUESS teams to evaluate, for example, the simulated 
height, diameter, and volume increments.  

https://webportals.ipsl.fr/VERIFY/Ressources_2D.html
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock
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Figure 15: Availability of raw NFI data over Europe gathered in VERIFY project (see 
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-
terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-
resolution-forest-cover-for-eastern-europe). 
 

Observed management and mortality data 

Observed mortality due to management or natural causes based on NFI data is provided in Schelhaas et 
al. (2018a,b). The most important species are treated individually, while the remainder are combined 
into one group. Data are presented by 5 cm classes, separately for management (HarvestProbability) 
and natural causes (DeadProbability) (see Figure 16). Note that harvested trees will include trees that 
died for natural reasons and that were subsequently extracted. These data are being used by the 
modelling groups to define spatially explicit forest management intensity.  

 

 

 

Figure 16: Left: regions for which management and mortality data are provided; Right: Example of 
regionally different patterns of management and mortality in Pinus sylvestris (Schelhaas et al., 2018b)  

 

https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-resolution-forest-cover-for-eastern-europe
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-resolution-forest-cover-for-eastern-europe
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-resolution-forest-cover-for-eastern-europe
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Biomass – age relationships  

To evaluate the performance of the models in simulating biomass-age relationship, an age - biomass 
evaluation dataset of plot-scale forest type and forest biomass was specifically constructed for 
ORCHIDEE by integrating several existing databases. The work was done by the main contributors of the 
forest demography developers of ORCHIDEE, namely, S. Luyssaert, G. Marie, Yue Chao and Pengyi 
Zhang; the dataset includes:  

1. the Forest Carbon Database (ForC) (Anderson-Teixeira et al., 2021) 
2. the forest biomass structure dataset for Eurasia  (Schepaschenko D et al., 2017) 
3. a fieldwork database established by Zhu et al. (2017). 
4. chronosequence-based dataset collected by Ye et al. (2021) (Note that this chronosequence 

database is to be published). 
5. a fieldwork database collected by Luo et al., (2018) 
6. a dataset from Poorter et al. (2017)  

These existing databases provide information on geographic location (latitude and longitude), dominant 
species or forest types, stand age, and aboveground or belowground biomass or total biomass carbon 
stock. It should be noted that sites in the ForC dataset may consist of multiple different plots. Following 
this procedure and to ensure the consistency of the constructed database, the leaf forms were divided 
into needleleaf and broadleaf, the leaf types into deciduous and evergreen, and the climates into tropical, 
temperate and boreal forest, according to the information on dominant species. In addition, biomass 
density (Mg ha-1) was converted to biomass carbon density (g C m-2) using the conversion factor of 
0.47. The above processing generated a database containing information on geographic location, forest 
types, leaf forms, leaf types, stand age, and aboveground or belowground biomass carbon density. 
These data are currently being used directly by the ORCHIDEE group to calibrate the regrowth curves of 
the ORCHIDEE – V4 version (including forest demography). Figure 17 below illustrates the location of 
the points that were collected.  

 

Figure 17: Spatial distribution of the observation sites compiled to calibrate the age-biomass regrowth 
curves of the ORCHIDEE model. 

  

https://github.com/forc-db/ForC/tree/master
https://www.nature.com/articles/sdata201770
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-017-00207-1/MediaObjects/41467_2017_207_MOESM2_ESM.xlsx
https://datadryad.org/stash/dataset/doi:10.5061/dryad.8bg44b0
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7.2 Remote sensing derived forest datasets    

Estimates of forest above-ground biomass and carbon changes (ΔAGB/C) using remote sensing have 
progressed due to the increasing demand from the scientific community and countries, in line with the 
increasing availability of satellite data. Recently, several methods and maps of forest carbon fluxes have 
been published using the “spatial approach” of mapping ΔAGB/C in multiple periods. Harris et al. (2021) 
mapped carbon fluxes using forest “gain-loss” pixels (Hansen et al., 2013), where the gained or lost 
carbon is estimated separately depending on the nature of changes from the IPCC activity data. Other 
recent methods used spaceborne radar and LiDAR data to map AGB/C in multiple periods (ESA-CCI 
product, Santoro and Cartus, 2021) and in time series (JPL product, Xu et al., 2021).   

The data from these studies were used to assess carbon fluxes for Europe from 2010 to 2018 during 
the VERIFY project. All products were adjusted for bias using independent reference biomass datasets 
following the uncertainty assessment framework in Araza et al. (2022). In total, six map-based estimates 
of forest carbon fluxes were derived that were also compared with the estimates from the Forest 
Resource Assessment (FRA). FRA data are available for the years 2010, 2015, and 2020 so they averaged 
2015 and 2020 to obtain a 2018 proxy.   

More details on these products are available in the report:  

https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-
terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-
resolution-forest-cover-for-eastern-europe 

Part of these data are currently being used for the evaluation of the ORCHIDEE model outputs, and some 
datasets were revised according to recent updates. In particular, we are currently mainly using the above 
ground biomass data from the ESA-CCI project and especially the most recent version V5, covering the 
period 2010 – 2021. Figure 18 illustrates the distribution of the above ground biomass of the ESA product 
that we are currently using to evaluate the biomass distribution of ORCHIDEE.   

 
Figure 18: Illustration of the above ground biomass distribution from the ESA-CCI biomass dataset 
(V5): https://climate.esa.int/en/projects/biomass/.  

Pucher dataset  

Pucher et al. (2022) released a recent dataset to provide an improved forest structure for Europe. 
Harmonized inventory data from 16 European countries were used in combination with remote sensing 
data and a gap-filling algorithm to produce a consistent and comparable forest structure dataset across 
European forests. They showed how land cover data can be used to scale inventory data to a higher 

https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-resolution-forest-cover-for-eastern-europe
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-resolution-forest-cover-for-eastern-europe
https://verify.lsce.ipsl.fr/index.php/repository/public-deliverables/wp3-verification-methods-for-terrestrial-co2-sources-and-sinks-and-carbon-stock/d3-14-national-forest-inventory-and-high-resolution-forest-cover-for-eastern-europe
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resolution, which in turn ensures a consistent data structure across sub-national, country and European 
forest assessments. Cross-validation and comparison with published country statistics of the Food and 
Agriculture Organization (FAO) indicated that their methodology was able to produce robust and accurate 
forest structure data across Europe, even for areas where no inventory data were available. 

Such dataset is available from the BOKU university in Vienna: https://boku.ac.at/en/wabo/waldbau/wir-
ueber-uns/daten and will be used separately by the LPJ-GUESS and ORCHIDEE teams. The dataset 
comprises several variables of interest for both groups, including volume, carbon content, biomass by 
compartment, height, diameter at breast height, stem number, basal area, stand density index, age class 
and tree species group. Figure 19 illustrates the two main variables (age class and tree height) that we 
are currently using to constraint our model. Indeed, one key challenge is to have some coherence 
between the land cover change/use products, the management rule implemented in the models and the 
age specified in the Pucher dataset.   

 

 

Figure 19: Illustration of the most frequent age class (left map; in years) and the tree height (right map, 
in metres) from Pucher et al., (2022) dataset. The data are gridded on an 8 × 8 km cell. Note that within 
each cell no distinction between forested or non-forested area is made; and a forest area mask is needed 
to quantify extent of forests. 

 

8. Conclusion 

This deliverable presents key datasets that are either currently being used as inputs for the ongoing 
model simulations of CO2, CH4 and N2O fluxes or used as validation and calibration for the development 
of the three models involved in EYE-CLIMA: ORCHIDEE, LPJ-GUESS and JSBACH. The EYE-CLIMA model 
input datasets deliverable has grown out of a collaboration between the three modelling groups. As such, 
the collection of data and development of model inputs will continue as user needs evolve. This is the 
second and final release of the deliverable.  

  

https://boku.ac.at/en/wabo/waldbau/wir-ueber-uns/daten
https://boku.ac.at/en/wabo/waldbau/wir-ueber-uns/daten
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