Preface

1.  Introduction

2.  Siting criteria

2.1       Representativeness within an area

2.2       Representativeness with respect to topographic features

2.2.1    Technical facilities

2.2.2    Documentation

2.2.3    Distance between sites

2.3       References

3.  Sampling methods

3.1       Precipitation amounts and determination of major ions in precipitation samples

3.1.1    Introduction

3.1.2    Principle

3.1.3    Site requirements

3.1.4    Sampling equipment

3.1.5    Sampling procedure

3.1.6    Chemical analyses

3.1.7    Calculation and reporting of results

3.1.8    Quality assurance

3.1.9    Special problems in precipitation sampling and analysis

3.1.10   References

3.2       Sampling of sulphur dioxide, sulphate, nitric acid, ammonia, nitrate and ammonium using the filter pack method

3.2.1    Introduction on the various sampling methods

3.2.2    Principle of using filter pack

3.2.3    Interference

3.2.4    Sampling equipment

3.2.5    Site requirements

3.2.6    Sampling procedure

3.2.7    Cleaning of filters

3.2.8    Impregnation of filters

3.2.9    Extraction from filters

3.2.10  Calculation of results

3.2.11  Quality assurance

3.2.12  References

3.3       Sampling of nitrogen dioxide

3.3.1    Determination of nitrogen dioxide using the iodide absorption method

3.3.1.1 Introduction

3.3.1.2 Principle 

3.3.1.3 Sampling efficiency and interference

3.3.1.4 Sampling equipment

3.3.1.5 Commercial supply

3.3.1.6 Site requirements

3.3.1.7 Preparation of the absorption system

3.3.1.8 Sampling procedure

3.3.1.9 Preparation of samples and chemical analysis

3.3.1.10  Calculation of the air concentration

3.3.1.11  References

3.4      Sampling of sulphur dioxide, sulphate, nitric acid, ammonia, nitrate and ammonium using annular denuders

3.4.1.1 Introduction

3.4.1.2 Principle

3.4.1.3 Sampling equipment

3.4.1.4 Commercial supply

3.4.1.5 Site requirements

3.4.1.6 Sampling procedure

3.4.1.7 Preparation of samples for chemical analyses

3.4.1.8 Calculation of results

3.4.1.9 Quality assurance

3.4.1.10  Comments with respect to the denuder sampling procedure

3.4.1.11  References

3.5      Cleaning and impregnation of filters

3.6      Extraction from filters

3.7      Determination of light hydrocarbons in air

3.7.1    Introduction

3.7.2    Principle

3.7.3    Sampling equipment

3.7.4    Sampling procedure

3.7.5    Cleaning of canisters before the first use

3.7.6    Commercial supply

3.7.7    References

3.8       Determination of aldehydes and ketones in ambient air

3.8.1    Introduction

3.8.2    Principle

3.8.3    Sampling equipment

3.8.4    Commercial supply

3.8.5    Preparation of ozone-scrubber

3.8.6    Sampling procedure

3.8.7    Sampling handing

3.8.8    Procedure for blank sample preparation

3.8.9    References

3.9       Determination of ozone

3.9.1    Introduction

3.9.2    Field of application

3.9.3    Principle

3.9.4    Reagents and materials

3.9.5    Apparatus

3.9.5.1 UV photometric ambient ozone analyzer

3.9.5.2 Apparatus for calibration

3.9.5.3 Calibration of the ambient ozone analyzer

3.9.6    Cooperation with WMO GAW on surface ozone measurements

3.9.7    References

3.10     Sampling of heavy metals in precipitation

3.10.1  Introduction

3.10.2  Siting criteria

3.10.3  Sampling procedure

3.10.3.1  Equipment

3.10.3.2  Cleaning

3.10.3.3  Standard operating procedure

3.10.4  Conservation and filtering precipitation samples

3.10.4.1  Sample storage

3.10.4.2  Filtration of precipitation

3.10.5  Field blanks

3.10.6  Measuring the influence of dry deposition

3.10.7  Quality assurance

3.10.8  References

3.11     Sampling of heavy metals in particles

3.11.1  Introduction

3.11.2  Sampling equipment

3.11.2.1  The air sampler

3.11.2.2  Filters

3.11.3  Sampling procedure

3.11.4  Field blanks

3.11.5  Extraction from filters

3.11.6  Filter blanks

3.11.7  Calculation of results

3.11.8  Quality assurance

3.12     Sampling of mercury in precipitation and air

3.12.1  Introduction

3.12.2  Sampling methods for mercury in precipitation

3.12.2.1  Sampler design and materials

3.12.2.2  Washing procedure for glass equipment

3.12.2.3  Sampling procedure

3.12.2.4  Quality control – Quality assurance

3.12.2.5  Field blanks

3.12.2.6  Special problems

3.12.2.7  Summary

3.12.3  Sampling methods for total gaseous mercury in air

3.12.3.1  Sampler design and cleaning procedure

3.12.3.2  Sampling procedure

3.12.3.3  Sample storage

3.12.3.4  Volume standardisation

3.12.3.5  Quality control - Quality assurance

3.12.3.6  Special problems

3.12.3.7  Summary

3.12.4  Intercomparisons

3.12.5  Commercial supply

3.12.6  References

3.13     Sampling of persistent organic pollutants pesticides and PCBs

3.13.1  Principle

3.13.2  Equipment for air sampling

3.13.3  Sampling procedure

3.13.4  Weighing filters

3.13.5  Extracting samples

3.13.6  Cleaning of equipment

3.13.6.1  Cleaning of the sampler

3.13.6.2  Cleaning of PUF-plugs

3.13.6.3  Cleaning of glass equipment

3.13.6.4  Cleaning of other equipment

3.14     Sampling of polycyclic aromatic hydrocarbons (PAH) in air

3.14.1  Principle

3.14.2  Sampling equipment and instruments

3.14.3  Cleaning of equipment

3.14.3.1  Glass equipment

3.14.3.2  Glass fibre filter

3.14.3.3  Extraction timbles

3.14.3.4  Sampler

3.14.3.5  PUF-plugs

3.14.3.6  XAD-2

3.14.4  Sampling

3.14.5  Weighing filters

3.14.6  Extraction

3.14.7  Pre-concentration

3.15     Measurement of PM10 particles

3.15.1  Introduction

3.15.2  Sampling equipment

3.15.2.1  Impactor inlet

3.15.3  Filters

3.15.4  Interference

3.15.5  Sampling procedure

3.15.6  Maintenance and calibration

3.15.7  Weighing procedure

3.15.8  Filter blanks

3.15.9  Commercial supply

3.15.10   References

3.15.11   Measurements of PM2.5 and PM1.0

3.15.11.1 List of Candidate CEN PM2.5 reference instruments

3.15.11.2 Manufactures with PM1.0 inlet

4.  Chemical analysis

4.1       Determination of sulphate, nitrate, chloride, ammonium, sodium, potassium, calcium, and magnesium with ion chromatography

4.1.1    Scope and Application

4.1.2    Principle

4.1.3    Interferences

4.1.4    Instrumentation

4.1.4.1 The Dionex (Dionex Corporation, Sunnyvale, CA, USA) system

4.1.4.2 The Waters (Waters Association, Milford, MA, USA) system

4.1.5    Reagents and standards

4.1.5.1 Eluent solutions

4.1.5.2 Stock standard solutions

4.1.5.3 Calibration solutions

4.1.6    Procedure

4.1.7    Calculation of the results

4.1.8    References

4.2       Determination of sulphate in precipitation

4.2.1    Spectrophotometric by the barium perchlorate-Thorin method

4.2.1.1 Field of application

4.2.1.2 Principle

4.2.1.3 Instrumentation

4.2.1.4 Chemicals

4.2.1.5 Reagents

4.2.1.6 Calibration

4.2.1.7 Analytical procedure

4.2.1.8 Interferences

4.2.1.9 References

4.2.2    Automatic Spectrophotometric by the barium perchlorate-Thorin method

4.2.2.1 Field of application

4.2.2.2 Principle

4.2.2.3 Instrumentation

4.2.2.4 Chemicals

4.2.2.5 Reagents

4.2.2.6 Calibration and analytical procedure

4.2.2.7 Expression of results

4.2.2.8 References

4.3      Determination of nitrate in precipitation

4.3.1   The manual spectrophotometric Griess method

4.3.1.1 Field of application

4.3.1.2 Principle

4.3.1.3 Instrumentation

4.3.1.4 Chemicals

4.3.1.5 Reagents

4.3.1.6 Calibration

4.3.1.7 Analytical procedure

4.3.1.8 References

4.3.2    Automatic spectrophotometric Griess method

4.3.2.1 Field of application

4.3.2.2 Principle

4.3.2.3 Instrumentation

4.3.2.4 Chemicals

4.3.2.5 Reagents

4.3.2.6 Calibration and analytical procedure

4.3.2.7 Expression of results

4.3.2.8 Interferences

4.3.2.9 References

4.4      Determination of ammonium in precipitation

4.4.1    Spectrophotometric by the indophenol blue method

4.4.1.1 Field of application

4.4.1.2 Principle

4.4.1.3 Instrumentation

4.4.1.4 Chemicals

4.4.1.5 Reagents

4.4.1.6 Calibration

4.4.1.7 Analytical procedure

4.4.1.8 Interferences

4.4.1.9 References

4.4.2    Automatic spectrophotometric determination of ammonium by the indophenol blue method

4.4.2.1 Field of application

4.4.2.2 Principle

4.4.2.3 Instrumentation

4.4.2.4 Chemicals

4.4.2.5 Reagents

4.4.2.6 Calibration and analytical procedure

4.4.2.7 Expression of results

4.4.2.8 Interferences

4.4.2.9 References

4.5      Determination of chloride in precipitation

4.5.1   Spectrophotometric mercury thiocyanate-iron method

4.5.1.1 Field of application

4.5.1.2 Principle

4.5.1.3 Instrumentation

4.5.1.4 Chemicals

4.5.1.5 Reagents

4.5.1.6 Calibration

4.5.1.7 Analytical procedure

4.5.1.8 Interferences

4.5.1.9 References

4.6      Determination of sodium, potassium, magnesium, and calcium in precipitation

4.6.1    Determination by flame atomic spectroscopy (AAS or AES)

4.6.1.1 Field of application

4.6.1.2 Principle

4.6.1.3 Interferences

4.6.1.4 Instrumentation

4.6.1.5 Chemicals

4.6.1.6 Reagents

4.6.1.7 Calibration solutions and stock solutions

4.6.1.8 Calibration of the instrument

4.6.1.9 Analytical procedure

4.7      Determination of pH in precipitation

4.7.1   Potentiometric method

4.7.1.1 Principle

4.7.1.2 Instrumentation

4.7.1.3 Chemicals

4.7.1.4 Reagents

4.7.1.5 Calibration

4.7.1.6 Analytical procedure

4.7.1.7 Performance test of the electrode pair

4.7.2   References

4.8      Determination of strong and weak acids in precipitation

4.8.1    Coulometric titration method

4.8.1.1 Field of application

4.8.1.2 Principle 

4.8.1.3 Instrumentation

4.8.1.4 Chemicals and reagents

4.8.1.5 Analytical procedure

4.8.1.6 Expression of results

4.8.1.7 References

4.8.2    Coulometric titration of strong acid by means of an instrument for automatic plotting of Gran’s function

4.8.2.1 Field of application

4.8.2.2 Principle

4.8.2.3 Instrumentation

4.8.2.4 Chemicals and reagents

4.8.2.5 Calibration

4.8.2.6 Analytical procedure

4.8.2.7 Expression of results

4.9      Determination of conductivity

4.9.1    Principle

4.9.2    Instrumentation

4.9.3    Chemicals

4.9.4    Calibration solutions

4.9.5    Calibration of the instrument

4.9.6    Measurement procedure

4.9.7    Maintenance and storage of measurement cell

4.10     Determination of sulphur dioxide as sulphate ions on impregnated filters

4.10.1  Determination of sulphur dioxide as sulphate by ion chromatography

4.10.2  Determination of sulphur dioxide as sulphate spectrophotometric by the barium perchlorate – Thorin method

4.10.2.1  Field of application

4.10.2.2  Principle

4.10.2.3  Instrumentation

4.10.2.4  Chemicals

4.10.2.5  Reagents

4.10.2.6  Calibration

4.10.2.7  Analytical procedure

4.10.2.8  Expression of results

4.10.2.9  References

4.11     Determination of nitrogen dioxide as nitrite

4.11.1  Determination of nitrite in extracts from impregnated glass sinters

4.11.1.1  Scope and application

4.11.1.2  Principle

4.11.1.3  Instrumentation

4.11.1.4  Chemicals

4.11.1.5  Reagents and solutions

4.11.1.6  Analytical procedure

4.12     Determination of nitric acid and ammonia absorbed on impregnated filters

4.12.1  Determination of nitrate ions by ion chromatography

4.12.2  Spectrophotometric determination of nitric acid by reduction to nitrite and reaction with sulphanilic acid

4.12.3  Automatic spectrophotometric determination of nitric acid by reduction to nitrite and reaction with sulphanilic acid

4.12.4  Determination of ammonium ions by ion chromatography

4.12.5  Spectrophotometric determination of ammonia as ammonium by the indophenol blue method

4.12.6  Automatic spectrophotometric determination of ammonia as ammonium by the indophenol blue method

4.13     Determination of sulphate in aerosol filters

4.13.1  Determination of sulphate ions by ion chromatography

4.13.2  Determination of sulphate spectrophotometric by the barium perchlorate – Thorin method

4.13.2.1  Field of application

4.13.2.2  Principle

4.13.2.3  Instrumentation

4.13.2.4  Chemicals

4.13.2.5  Reagents

4.13.2.6  Calibration

4.13.2.7  Analytical procedure

4.13.2.8  Expression of results

4.14    Determination of nitrate and ammonium in aerosol filters

4.14.1  Determination of nitrate ions by ion chromatography

4.14.2  Spectrophotometric determination of nitrate by reduction to nitrite and reaction with sulphanilic acid

4.14.3  Automatic spectrophotometric determination of nitrate by reduction to nitrite and reaction with sulphanilic acid

4.14.4  Determination of ammonium ions by ion chromatography

4.14.5  Spectrophotometric determination of ammonium by the indophenol blue method

4.14.6  Automatic spectrophotometric determination of ammonium by the indophenol blue method

4.15     Determination of light hydrocarbons

4.15.1  Instrumentation

4.15.1.1  VOC air analyser (Chrompack, Middelburg, The Netherlands)

4.15.1.2  Gas chromatography (GC 9000 Chrompack)

4.15.1.3  Gases and materials

4.15.2  Analytical Procedure

4.15.3  Quality assurance

4.15.3.1  Calibration

4.15.3.2  Maintenance

4.15.4  References

4.16     Determination of aldehydes and ketones in ambient air

4.16.1  Instrumentation

4.16.1.1  Chemicals

4.16.2  Analytical procedure

4.16.3  Blanks

4.16.4  Preparation of hydrazones

4.16.5  Calibration

4.16.6  Quantification

4.16.7  Interferences

4.16.8  References

4.17     Analytical methods for determination of heavy metals

4.17.1  Introduction

4.17.2  Washing procedures

4.17.3  Determination of Cd, Pb, Cu, Zn, Cr, Ni and As by the use of inductively coupled plasma mass spectrometry (ICP-MS)

4.17.3.1  Introduction

4.17.3.2  Principles

4.17.3.3  Interferences

4.17.3.4  Calibration and standardisation

4.17.4  Determination of Cd, Pb, Cu, Zn, Cr, Ni and As by the use of graphite furnace atomic absorption spectroscopy (GF-AAS)

4.17.4.1  Introduction

4.17.4.2  Principles

4.17.4.3  Interference

4.17.4.4  Instrumentation

4.17.4.5  Reagents and standards

4.17.4.6  Instrument procedure

4.17.4.7  Setting up a temperature programme

4.17.4.8  Instrument performance

4.17.4.9  Chemical modifiers

4.17.4.10 Sequence of analysis

4.17.5  Determination of zinc by flame atomic absorption spectroscopy (F-AAS)

4.17.5.1  Introduction

4.17.5.2  Principles

4.17.5.3  Interferences

4.17.5.4  Instrumentation

4.17.5.5  Reagents and standards

4.17.5.6  Instrumental procedure

4.17.5.7  Instrument performance

4.17.5.8  Sequence of analysis

4.17.6   References

4.18     Analysis of mercury in precipitation and air

4.18.1  Analysis of mercury in precipitation

4.18.1.1  Instrumentation

4.18.1.2  Sample storage and handling

4.18.1.3  Chemicals and glassware

4.18.1.4  Pre-treatment

4.18.1.5  Preparation of reducing vessels

4.18.1.6  Reduction step

4.18.1.7  Detection

4.18.1.8  Calibration

4.18.1.9  Quality control - Quality assurance

4.18.1.10 Special problems

4.18.1.11 Summary

4.18.2  Analysis of mercury in air

4.18.2.1  Sample pre-treatment

4.18.2.2  Analysis

4.18.2.3  Calibration

4.18.2.4  Quality assurance

4.18.2.5  Detection limit

4.18.2.6  Special problems

4.18.2.7  Summary

4.18.3  References

4.19     Determination of persistent organic pollutants (pesticides and PCBs)

4.19.1  Principle

4.19.2  Materials and equipment

4.19.2.1  Glassware

4.19.2.2  Other equipment

4.19.2.3  Analytical equipment and accessories

4.19.2.4  Chemicals and gases

4.19.3  Cleaning and pre-treatment

4.19.3.1  Cleaning of the sampler

4.19.3.2  Cleaning of PUF-plugs

4.19.3.3  Cleaning of glass equipment

4.19.3.4  Cleaning of other equipment

4.19.3.5  Check and pre-treatment of solvents and chemicals

4.19.3.6  Cleaning of diethyl ether

4.19.3.7  Pre-treatment of sodium sulphate

4.19.3.8  Pre-treatment of silica

4.19.3.9  Cleaning of soxhlet thimbles

4.19.3.10 Cleaning of cotton wool

4.19.4  Gas cleaning

4.19.4.1  Gas bottle exchange

4.19.5  Special procedures

4.19.6  Treatment of adsorbents

4.19.7  Sample preparation

4.19.7.1  Principle

4.19.7.2  Sulphuric acid treatment of acid-stable substances

4.19.7.3  Alkaline hydrolysis of acid-labile substances

4.19.7.4  Silica chromatography

4.19.7.5  If the sample contains silica particles

4.19.8  Standards

4.19.8.1  Concentrated standard

4.19.8.2  Calibration standard

4.19.8.3  Internal standard (ISTD)

4.19.8.4  Recovery standard (RSTD)

4.19.8.5  Standard addition

4.19.8.6  Quality assurance of standards

4.19.9  Separation and quantification

4.19.9.1  Principle

4.19.9.2  Gas chromatographic conditions

4.19.9.3  GC/MS-analysis

4.19.10   Calibration of instruments

4.19.10.1 Control of concentrations of standards

4.19.10.2 Frequency of GC injections of quantification standard

4.19.10.3 Analysis of control samples

4.19.11   Recovery test

4.19.12   Quality assurance

4.19.12.1 General principles

4.19.12.2 Administrative routines

4.19.12.3 Sample journal

4.19.12.4 Sample handling form

4.19.12.5 Instrument logbook

4.19.12.6 Standard journal

4.19.12.7 Acceptance of results

4.19.12.8 Reporting of results

4.19.12.9 Storage

4.19.12.10 Validation of the method

4.19.12.11 Testing of blank values

4.19.12.12 Participation in laboratory intercomparisons

4.19.13    Reference

4.20     Determination of polycyclic aromatic hydrocarbons (PAHs) in air

4.20.1  Introduction

4.20.2  Equipment and instruments

4.20.2.1  Gas chromatography/mass spectrometry (GC/MS)

4.20.2.2  Liquid chromatograph

4.20.2.3  Soxhlet equipment

4.20.2.4  Glass equipment

4.20.2.5  Other equipment

4.20.3  Chemicals and gases

4.20.4  Cleaning of equipment and chemicals

4.20.4.1  Glass equipment

4.20.4.2  Glass fibre filter

4.20.4.3  Extraction thimbles

4.20.4.4  Sampler

4.20.4.5  Sodium sulphate

4.20.4.6  PUF-plugs

4.20.4.7  Drying

4.20.4.8  XAD-2

4.20.5  Gas cleaning

4.20.5.1  Gas bottle exchange

4.20.5.2  Special procedures

4.20.6  Treatment of adsorbents

4.20.7  Analysis

4.20.7.1  Adding internal standards

4.20.7.2  Clean-up

4.20.7.3  Sample clean-up using HPLC

4.20.7.4  Cleaning of the column

4.20.8  Calibration and quantification

4.20.8.1  PAH-standards

4.20.8.2  Main standard

4.20.8.3  Internal standards

4.20.8.4  Recovery standard

4.20.8.5  Quantification standard

4.20.8.6  Control standard

4.20.8.7  Retention standard, HPLC

4.20.9  Separation and quantification

4.20.9.1  GC separation

4.20.9.2  Mass spectrometry (MS)

4.20.9.3  Quantification

4.20.9.4  GC/MS-analysis

4.20.9.5  Detection limit

4.20.10   Quality assurance

4.20.10.1 Reception and storage of samples

4.20.10.2 Standard mixtures

4.20.10.3 Control standard

4.20.10.4 Recovery of internal standard

4.20.10.5 Blanks

4.20.10.6 Control of results

4.21     Chemical speciation

4.21.1  Introduction

4.21.2  Extraction

4.21.3  Determination of the inorganic components

4.21.4  Determination of heavy metals

4.21.5  EC/OC determination

4.21.6  Chemical characterization of the OC fraction

4.21.7  Analysis of mineral dust

4.21.8  References

5.  Quality assurance

5.1      Job description for EMEP’s National Quality Assurance Manager

5.2      EMEP Data Quality Objectives (DQO)

5.2.1    DQO for the acidifying and eutrophying compounds

5.2.2    DQO for heavy metals

5.3       Quality Assurance Plan

5.4       Measurement sites

5.4.1    Information about a monitoring site

5.5       Field and laboratory operations

5.5.1    Common guidelines for field and laboratory activities

5.5.1.1 Audits

5.5.2    Field operations

5.5.2.1 Instrumentation

5.5.2.2 Changing of samples at the site

5.5.2.3 Sample storage and transportation

5.5.2.4 Field blanks

5.5.2.5 Comparison of different field instruments

5.5.2.6 Precision of field instruments and measurement systems

5.5.3    Laboratory operations

5.5.3.1 Chemical analysis

5.6      Determination of accuracy

5.6.1    Determination of systematic errors

5.6.2    Determination of precision

5.6.3    Calculation example for precision

5.7      Calculation of detection limit

5.7.1    Basic assumption

5.7.2    Statistical considerations

5.7.2.1 Data distribution

5.7.2.2 Detection limit

5.7.2.3 Winsorization procedure

5.7.3    Calculation example for air samples

5.8      Training of personnel

5.8.1    Training of station personnel

5.8.2    Training of laboratory personnel

5.9      References

6.  Data handling and data reporting

6.1      Data checking

6.1.1    Statistical tests

6.1.2    Ion balance

6.1.3    Conductivity

6.1.4    Calculation of ion balance and conductivity

6.1.5    Use of time series plots in data checking

6.1.6    Other methods for data check

6.2       Rejection of data

6.3       Classification of precipitation samples

6.4       Data flags

6.4.1    Group 9: Missing

6.4.2    Group 8: Undefined

6.4.3    Group 7: Value unknown

6.4.4    Group 6: Mechanical problem

6.4.5    Group 5: Chemical problem

6.4.6    Group 4: Extreme or inconsistent values

6.4.7    Group 3 

6.4.8    Group 2: Exception flags assigned by the database co-ordinator

6.4.9    Group 1: Exception flags for accepted, irregular data

6.4.10   Group 0

6.5       Data reporting

6.6       References