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ABSTRACT

The transfer equations for normal waves in finite, inhomogeneous and plane-parallel magnetoactive media
are solved using the discrete ordinate method. The physical process of absorption, emission, and multiple scat-
tering are accounted for, and the medium may be forced both at the top and bottom boundary by anisotropic
radiation as well as by internal anisotropic sources.

The computational procedure is numerically stable for arbitrarily large optical depths, and the computer
time is independent of optical thickness.

Subject headings: polarization — radiative transfer

1. INTRODUCTION

To compute the spectrum and polarization of light emitted by many astrophysical sources it is necessary to solve the equation
pertinent to radiation transport in a magnetoactive plasma. In general the radiative transfer equation must be solved for four Stokes
parameters; however, for most astrophysical plasmas the concept of two normal waves—the ordinary and the extraordinary—
applies (Gnedin & Pavlov 1974). The resulting radiative transfer equation has been studied by several authors under different
assumptions, e.g., Ramaty (1969) and Meszaros, Nagel, & Ventura (1980); one of the more general solutions to the problem is given
by Nagendra & Peraiah (1985). The main aim of this paper is to present a reliable and efficient solution of the equation pertinent to
radiation transport in an absorbing, emitting and scattering, inhomogeneous, and magnetoactive plasma slab. In § 1.1 we present
the appropriate radiative transfer equation and cast it in a form amenable to solution. Section 2 is devoted to the description of the
solution of the resulting radiation transport equation in the discrete ordinate approximation. In § 3 we verify the solution method
by comparing it with exact results. Finally in § 4 we briefly discuss possible applications and extensions of the theory.

1.1. The Radiative Transfer Equation

Assuming azimuthal symmetry and coherent (monoenergetic) scattering, the normal wave equations in slab geometry are given
by (Gnedin & Pavlov 1974),
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Here n,(z) is the density of the kth species in the medium and I,(z, x) and I,(z, u) represent the extraordinary and ordinary wave,
respectively, traveling in direction u = cos 0 (0 is the polar angle between the ray and the z-axis) at depth z. The mode exchange
scattering coefficients are ¢%35°*(u; ') and o%°*(u; u); and o%§°*(u; ') and o%;5°*(u; 1) are the mode conserving scattering coeffi-
cients. Q,(z, #) and Q,(z, p) represent general anisotropic sources embedded in the medium. For thermal radiation Q,(z, p) =

02> B(T)/2, where B(T) is the Planck function at the local temperature T. The total cross sections are defined by
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To solve equation (1), we start by writing it on a form amenable to solution. For convenience we define an optical thickness
dv= =Y nfz)o%i"dz 3)
k
and phase matrix elements
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We also define a single scattering albedo
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mode conversion factors for mode 1 to mode 2 scattering
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and for mode 2 to mode 1 scattering
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Furthermore we define a relative “scattering ” depth between mode 2 and 1
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and a relative “exctinction ” depth between mode 2 and 1
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In general plasmas are highly inhomogeneous, and the typical situation is the existence of smooth and very large changes in the
properties of the medium. Hence, when solving the radiative transfer equation, the optical properties should be allowed to vary
throughout the medium. The optical properties of the plasma slab under consideration are described by the single scattering albedo
q,(7), the different mode factors f,,(tr) and the phase matrix elements P,,(t, #; ') which are all functions of 7 in an inhomogeneous
medium. To allow for this z-dependence the medium is assumed to consist of L adjacent homogeneous layers. In each layer the
single scattering albedo, the mode factors and the phase matrix elements are taken to be constant, but they are allowed to vary from
layer to layer. The source term is approximated by an exponential-linear function in t in each layer; see § 2.2. For each homoge-
neous layer7,_; <t <1, p = 1, ..., L we may thus write equation (1) as
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2. DISCRETE ORDINATE SOLUTION

To solve equation (10) we use the discrete ordinate method as developed by Chandrasekhar (1960) and Stamnes et al. (1988). First
we discuss the solution of the homogeneous equation; next, we find a particular solution to the inhomogeneous equation.

2.1. Homogeneous Solution
Replacing the integral in equation (10) by a sum using Gaussian quadrature we get (homogeneous equation only)
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where the x;’s and the a;’s are the quadrature points and weights, respectively, and (f;; = 1)
D gp(u;s ) = 3 S 011 P ot 1) . (13)

We note that the merit of the discrete ordinate approximation is to replace two coupled linear integrodifferential equations (which
have no known analytic solutions) with a system of 4N coupled linear differential equations for which analytical solutions (with
numerical coefficients) exists.

Assuming that the phase matrix elements satisfy the following symmetry relations valid for scattering by a central force field

Poy(pis 1) = Po(— i3 — 1)

Poy(—u;; ,“j) = P(u;; _.uj) , (14)
we may write equation (12) in matrix form as
I{(v) « B n|[If@
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where
1T, =150, £), i=1,..,N (16)
and the N x N matrices a, 8,7, 4, {, 7, 1, and x are
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We have used the property u_; = —u; which applies for the Gaussian quadrature rule adopted here.

In the case of no scattering, w,; = 0, all the off-diagonal elements in the 4N x 4N matrix in equation (15) become zero and the
transfer equations for the different components of 1} decouple. This case of absorption and emission (source term included) has
been studied by, e.g., Ramaty (1969). Furthermore, in the case of no mode conversion, i.e., f;, = f,; = 0, the equations for I, and I,
separates and for each component we are left with a scalar integrodifferential equation which is readily solved using for example the
discrete ordinate algorithm due to Stamnes et al. (1988).

In general w4, f;,,f,1,and f,, may all be non zero. We then seek solutions to equation (15) of the form

If()=g*e™ (25)
If(t) = hte ™, (26)
Insertion of equations (25)26) in equation (15) gives
—o = = —nllg* g
o
LA AR @
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which is a standard eigenvalue problem of order 4N x 4N determining the eigenvalues k and the eigenvectors g* and h*. Because of
the special structure of the matrix in equation (27) the eigenvalues occur in pairs (+k) and the order of the eigenvalue problem in
equation (27) may be reduced by a factor 2 by generalizing a procedure introduced by Stamnes & Swanson (1981) for the scalar
version of equation (1). First we rewrite equation (27) as

ag* +PBg” +ChT +nhT = —kg* (28)
Bgt +ag” +nht +Lh = kg (29)
9" + kg™ +yht +AhT = —kh* (30)
kgt +19g” + Aht +yh = kh™ . (31)
By adding and subtracting the first two equations and the last two equations, we get
@+P* +g )+ C+nh" +h7)=—kg* —g") (32)
@—Bg* =g )+C—mnh" —h")=—kg* +g") (33)
G+x)gT+g )+ @+ AR +h )= —kh* —h") (34)
(—xNg" —g )+ — A" —h7)= —k(h* +h7). (35)
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Eliminating (9* — ¢g~)and (h* — h~) in equations (32)~(35) gives the following eigenvalue problem of order 2N x 2N:
[(fx —Po+B+C—n+r) @—BHC+m+C—ny+ l)][(f + g“] 3 kz[e* + g“]
(=we+B+OG -+ =)+ +OG—-Dy+ANrT+h | " |t +n |’

which yields 2N values for k* and thereby determines the 4N eigenvalues + k and the 2N eigenvectors (g* + g )and (h* + h~). The

eigenvectors (9" — ¢g~) and (h* — h~) are determined from equations (32) and (34), respectively. The homogeneous solution may
then be written as

(36)

2N
Ii(t, p) = Z Cigiu)e™ ™ (37
1="2N
1#0
2N
I,(t, p) = Z C hu)e ", i=+1,..., +N (38)
1="2N
10

where C, are 4N constants of integration to be determined from the boundary conditions.
We note that in the 2 stream (N = 1) approximation, «, f, y, 4, {, , 1, and « given in equations (17)~24) are scalars; thus in this
case the matrix on the left-hand side of equation (36)is a 2 x 2 matrix, and we may readily solve the eigenvalue problem.

2.2. Inhomogeneous Solution
As mentioned above the embedded source for thermal radiation Q,(t, u) = 62*B(T)/2. The behavior of the Planck function
depends upon the frequency and temperature regions of interest. Integrated over the entire spectrum, the Planck function becomes
B(T) = 6T*, (39

where o is the Stefan-Boltzmann constant. In the Wien limit (hv > kT'; h is the Planck constant and k is the Boltzmann constant) the
Planck function at frequency v is

2hv3
B(T) = —:— e kT (40)
c
and in the Rayleigh-Jeans limit (hv < kT)
202
B(T) = = kT . 41)

Thus depending on the problem at hand, the source function may vary slowly or rapidly as a function of temperature, or depth z in
the layer since T' = T(z).

To allow for internal source functions that may vary both rapidly and slowly throughout the layer, or with optical depth, we
approximate the internal source function in each layer by an exponential-linear function (Kylling & Stamnes 1991)

[ql(r, W] _ g-n X300 + X301
0m |~ L300 + Xy |

where p, X9, X9, X1, and X} are constants found by fitting the actual source to equation (42), as explained below. Seeking a
particular solution of the form

(42)
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we get after inserting equation (43) into equation (10) and equating coefficients of like powers of
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which are linear algebraic equations of the form Ax = b determining the Y2(u;) and Y!(u,) coefficients, a = 1, 2. We may thus write
the full solution to equation (1) for layer p

2N
Il,p(T, ,ut) = _Z Cl,p gl,p(ﬂi)e_k"pt + e‘ﬂpr[y(l),p(ﬂi) + Yi,p(/‘ti)r] (46)
T
2N
I, (v, 1) = Z Cl,phl,p(ﬂi)e—k"pt + e_p"t[Y(z),p(ﬂi) + Yé,p(ﬂi)'f] s i=+1,..., =N. 47)
1="2N

It should be noticed that equations (46)—(47) allow us to compute the intensity fields at any optical depth in the medium.
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2.2.1 Thep, X%, X9, X!, and X} Coefficients
To find the five coefficients, p, X9, X9, X1, and X2, five equations are required. We assume that the internal sources are known at

& the layer boundaries 1, and 1,, 7, > 7, and that 0, isknownat 7, = (1o + 17,)/2.

01(t0, 1) = e P [X () + X1(1)70]
0i(ty, p) = e " [X () + X1(w)7,]
0i(v2, ) = e P2 [X (W) + X i()r,]
01(to, 1) = e P°[X (1) + X3(1)70]
012, 1) = e P2 [X3() + X3()2] -

We force p to be angle independent by solving the equations for one fixed angle, e.g., u,. Solving the five equations above then gives

2 In {Q:1(11, Uy) n \/(gl("?v .“1))2 _ 91(70a .“1)} (48)
T, — 7o Q1(t2, 1) Qi(t3, 1y) Q4(t2, uy)

Xi(u) = Q1(72: lli)e‘:2 : ?1(70, u;)e’™° (49)
2 0

X (1)(/1.') = 61(70’ u)er — X i(ﬂi)fo (50)

X;(ﬂi) _ Qz(‘fz, u)ert: — Qz(To, w)e’™ (51)
T2 — 70

X(z)(l‘i) = Qz(fo, ui)ef™ — le’(ﬂi)‘fo s i=+1,..., £N. (52)

Care must be taken in evaluating p in order to avoid numerical overflow in equations (49)-52); see Kylling & Stamnes (1991). For
04(t5, p) > O4(ty, 1) > Q4(z, 1;) we use the (+) solution for p and the (—) solution if §,(t,, 1) < §,(ty, ) < 01(to, ).

2.3. Scaling Transformations
To avoid overflow in equations (46)(47) and most importantly numerical ill-conditioning when solving for the constants of

integration (eqs. [65]-[70] below, remember k_;, = —k;), we utilize the scaling transformation discussed by Stamnes & Conklin
(1984). (Here and below we let k_, = —k;, thus k;, > Ofor all 1)
Cypp=Cyypetret (53)
C_,,=C_ et (54)
Inserting equations (53)—(54) into equations (46){47) we get
Iy (T ) = ZZN [Co1pg-1 e ™70 4+ C oy gy (e ™ 77 0] + Ry (z, 1)) (55)
"
I, (T, m) = l; [Coiph e 0 4+ €y L hyy (u)e™ 02"V 4+ R, (1, 1) (56)
where
Ry 1, p) = e [YS (1) + Y1 ,(m)] (57)
Ry ot ) = e P [YS () + Y3 ]l i=%1,..., £N, (58)

and all the exponentials in the homogeneous solution have negative arguments as they should to avoid numerical overflow. We may
thus proceed to calculate the constants of integration.

2.4. Boundary Conditions
We allow the medium to be illuminated from above by an anisotropic source

Iy 40, —p) = IP(—p) (59
12,1(0’ _”l)=1?(_ﬂl)’ l=1’5N (60)
Across layer interfaces we require the intensities to be continuous:
Il,p(‘fp’ u) = Il,p+1(Tp’ 1) (61)
IZ.p(Tp’lui)=12,p+1(1p’tui)s l=i1>’ i—Na p=ls’L_1 (62)
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Finally the medium may be forced by radiation incident at the bottom boundary
Iy (v, p) = () (63)
Iy (T, p) = ) , i=1...,N. (64)
Insertion of equations (55)}56) into equations (59)(64) yields
2N
12‘1 [C_119-, (=) re 4 C+l, 19+1,1(—p)] = IP(=p) — Ry 10, —pz) (65)
2N - -
121 [C—l,1h-1,1(—ﬂi)e_k"m + Coprhy (=) = I2(— ) — Ry 10, — ), i=1...,N (66)

2N
zZ1 [6~1,p9—1,p(ﬂi) + C+t‘pg+1,p(l‘i)e*kl'"(t"_t”_1) - 6~1,p+1g—t_p+ (e et rlepr1 ) 6+1,p+1g+1,p+1(ﬂi)]
= Rl,p+ 1(Tps ") — Rl,p(‘fp, u;) (67)
2N
1; [C_, hoy (1) + C+l,ph+l,p(ﬂi)e_k"p(tp_tp_l) - C—t,p+1h—1,p+1(ﬂi)‘—’_k”p“(t”“_I") —Coippethigp+ ()]

=R, 41ty ) — Ry (T, 1) i=+1,..., +N p=1...,L—1 (68)

2N

121 [C—z,Lg—z.L(l‘i)e_k"L(tL_erl) +Copr g )] = I’i(ﬂi) — Ry (g, ) (69)
2N N

T LC ol 0 4 )] = ) — Rofi ), i= 1o N (70

which is a (4N x L) x (4N x L) system of linear algebraic equations from which the 4N x L unknown coefficients C,, »l==1,
..., £2N,p =1, ..., L are determined. The coefficient matrix is a 12N — 1 diagonal band matrix. This fact may be used to speed up
the computation of the constants of integration. It should be noted that due to the use of the scaling transformation equations
(53)—(54), the system of linear equations given by equations (65)—(70) is unconditionally well-conditioned for arbitrary total optical
thickness and arbitrary individual layer optical depths.

3. VERIFICATION OF THE SOLUTION METHOD

Complex numerical schemes such as the one outlined above need to be extensively tested and checked for errors before they can
be safely used. For some special cases analytic solutions are available; furthermore comparisons can be made with previous
solutions to similar problems. Our solutions, equations (55)H56), are the sum of the homogeneous and the inhomogeneous
solutions. We first verify that our homogeneous solution is correct and next the inhomogeneous solution.

3.1. Homogeneous Solution

To verify the numerical scheme for the homogeneous solution we repeat the calculations done by Chandrasekhar (1960,
p. 234-249) for a conservative, semi-infinite electron scattering atmosphere. Since our model pertains to a finite atmosphere, we
mimic the semi-infinite slab by setting the total optical depth equal to 100. For conservative scattering, w,; = 1. and f,, = 1., the
eigenvalue problem in equation (36) is degenerate, i.e., some eigenvalues are zero. However a value close to 1.0 will be adequate; we
chose w,; = 0.9999. To make the analogy between equation (10) in this work and equation (227), Chandrasekhar (1960, p. 43) we
make the identifications I,(z, u) = I(t, p) and I,(z, y) = I (z, u); furthermore; the phase matrix elements for an electron scattering

atmosphere are given by

Pyy(us f) = 31 — 21 — %) + 3202

Po(u; ) = 312

Poyp; 1) = 3

Pyylus ) =% .
We use a 20 stream (N = 10) approximation and have isotropic radiation incident at the bottom of the slab. Figure 1 shows the
degree of polarization as obtained by Chandrasekhar (solid line) and by the present calculation (asterisks). Good agreement is found
between the two methods.

The atmosphere discussed by Chandrasekhar is homogeneous, therefore, one layer is sufficient in our model. Dividing the
atmosphere into several identical layers with the same total thickness should of course produce the same results. Such a multilayer
calculation provides a good test for checking the calculation of the constants of integration in equations (65)<70) and was thus
performed. The same result was obtained as in the single-layer calculation.

3.2. Inhomogeneous Solution

To test the inhomogeneous solution for an anisotropic source Q(t, u) we set f;, = f,, = 0. Equation (10) then separates into two
independent equations, each of the same form as the much studied scalar equation for the diffuse radiation field in a plane-parallel
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F1G. 1.—The degree of polarization é = [I(t, ) — I,(tr, W]/[I{z, ) + I(z, w)] as a function of the polar angle 6. The solid line is the result of Chandrasekhar; the
asterisks represent the present method.

atmosphere. Using the attenuated direct beam as an example of an anisotropic internal pseudosource (Kylling & Stamnes 1991),
equation (10) was solved for a variety of different phase matrix elements P, ,(u; ') and P,,(u; ') and optical depths 7. The results
were compared with solutions from the scalar equation for the diffuse radiation field, as solved by Stamnes et al. (1988). Excellent
agreement was found.

4. DISCUSSION

The flexibility and generality of the above formalism makes it applicable to detailed studies of radiation from a variety of
astrophysical sources, e.g., X-ray pulsars. The effects of inhomogeneties in the medium that the radiation traverses may readily be
studied, and both the emergent and internal radiation fields are easily calculated.

It is noted that with the appropriate phase elements, the above solution method, combined with the solution of the scalar version
of equation (10), constitute the complete solution for a layered Rayleigh-scattering atmosphere; see Chandrasekhar (1960)
p- 249-256). Furthermore the equivalence between equation (1) and the mono-energetic one-dimensional transport equation
pertinent to hydrogen/proton transport in Earth’s upper atmosphere (Rees 1989) is noted.

The author believes that the above formalism may be extended to include azimuthal dependence and all four components of the
Stokes vector. To include incoherent scattering, the multigroup procedure (Duderstadt & Martin 1979) may be used.

Constructive comments on the manuscript by Knut Stamnes are gratefully acknowledged. Part of this research was done when
the author was enjoying the hospitality of the Auroral Observatory, University of Tromse, Norway. It was in part supported by the
Norwegian Council on Science and Technology and the National Aeronautics and Space Administration through grant NAGW-
2165 to the University of Alaska.
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