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A B S T R A C T

Monitoring flying aircraft from satellite data is important for evaluating the climate impact caused by the global
aviation industry. However, due to the small size of aircraft and the complex surface types, it is almost im-
possible to identify aircraft from satellite data with moderate resolution, e.g. 30m. In this study, the 1.38 μm
water vapor absorption channel, often used for cirrus cloud or ash detection, is for the first time used to monitor
flying aircraft from Landsat 8 data. The basic theory behind the detection of flying aircraft is that in the 1.38 μm
channel most of the background reflectance between the ground and the aircraft is masked due to the strong
water vapor absorption, while the signal of the flying aircraft will be attenuated less due to the low water vapor
content between the satellite and the aircraft. A new composition of the Laplacian and Sobel operators for
segmenting aircraft and other features were used to identify the flying aircraft. The Landsat 8 Operational Land
Imager (OLI) 2.1 μm channel was used to make the method succeed under low vapor content. The accuracy
assessment based on 65 Landsat 8 images indicated that the percentage of leakage is 3.18% and the percentage
of false alarm is 0.532%.

1. Introduction

The growing aviation fleet raises concerns about how to monitor the
aircraft activity and evaluate the climate impact of the aviation industry
(Burkhardt and Kärcher, 2011). According to the report from the In-
tergovernmental Panel on Climate Change (IPCC), aviation produces
around 2% of the world’s manmade emissions of carbon dioxide (CO2),
an important but inconclusive global radiative forcing caused by the
contrail cirrus, and small amounts of soot particles, nitrogen oxides etc.
(Penner, 1999). Contrail cirrus with line-shape formed initially by the
cruising aircraft is one of the important anthropogenic contributions to
the global radiative forcing (Sausen et al., 2005). While automated
contrail tracking algorithms exist (Vazquez-Navarro et al, 2010), it is
generally difficult to track contrail cirrus and distinguish the contrail
cirrus from natural cirrus in satellite remote sensing data directly. Thus,
current research aiming to understand the radiative forcing caused by
the contrail cirrus is mainly based on model simulation, which faces
many uncertainties, such as, many simplifying assumptions used in the
model, lack of observation data of contrail cirrus and optical depth, and
no enough observation radiance data to validate and improve the si-
mulation model (Minnis et al., 1999; Ponater et al., 2002; Schumann

2012; Chen and Gettelman, 2013; Bock and Burkhardt, 2016).
Currently, the most efficient ways to track the activity of aircraft are

ground radar and Automatic Dependent Surveillance Broadcast (ADS-B)
receiver. Both the radar and ADS-B receiver are ground devices, and
each of them provides coverage ranges from tens to hundreds of kilo-
meters. The main problem of these ground devices is that uncovered
area cannot provide any information about the aircraft. Besides, aircraft
detection based on satellite remote sensing image with high spatial
resolution is also being presented, and several studies have been made
to recognize aircrafts from such images (Zhang and Zhou, 2007; Wu
et al., 2015). These approaches mainly adopted some digital image
processing and classification algorithms which depend on the high re-
solution of the images for aircraft detection, e.g. corner detection,
neural network, and wavelet transform (Benedetto et al., 2012). But
high spatial resolution satellite images are not suitable to monitor the
aircraft activity globally, because high spatial resolution satellite
images are heavily influenced by clouds and have a long revisit cycle.

The moderate-resolution Earth observation satellites, such as Landsat
7/8 and Sentinel 2, have spatial resolution around 10–60m and a short
revisit cycle (16-day for Landsat 8 and 5-day for Sentinel 2 A B) to image
the entire Earth (Roy et al., 2014; Shoko and Mutanga, 2017). Compared
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with high resolution satellites, the spatial resolutions of these moderate-
resolution Earth observation satellites are the primary limitation factor
when using the above methods to recognize aircraft. Hence, there is no
research in the literature about how to identify aircraft from these data
so far. The 1.38 μm water vapor absorption channels of Landsat 8 and
Sentinel 2 with 30m and 60m resolutions respectively, provide an op-
portunity to monitor flying aircraft. In this study, we presented a tech-
nique to detect flying aircraft using these channels, and this method is for
the first time to give us an opportunity to observe the global aviation
activity. The detection results will be useful for tracing the aircraft ac-
tivity and subsequently evaluating the impacts of radiative forcing and
pollution caused by the global aviation industry.

2. Algorithm

2.1. Basic theory

Sitting on the edge of a very strong line of water vapor absorption,
the 1.38 μm channel is usually used to monitor cirrus cloud,

furthermore, it is sensitive to scattering objects (Xia et al., 2015). When
the water vapor content is sufficiently high, the 1.38 μm signal from the
surface is masked by the absorption of water vapor, but objects at high
altitudes, e.g. high cloud, cirrus cloud or volcanic ash are less influ-
enced for the reason that water vapor content between them and the
satellite is relatively low. Hence, the 1.38 μm channel is often used to
monitor cirrus cloud and track volcanic ash (Gao et al., 1993; Gao and
Kaufman, 1995; Frey et al., 2008; Xia et al., 2018).

The top of atmosphere (TOA) reflectance of the OLI band 9 was
simulated by the libRadtran radiative transfer software package version
2.0.1 for five kinds of surface types at different altitudes above sea level
(Mayer and Kylling, 2005; Emde et al., 2016), as shown in Fig. 1. The
mid-latitude standard model atmosphere was used and the vapor con-
tent was set to 2.0 g/cm2. As can be seen from the figure, as the altitude
of the surface increases, the reflectance increases, the surfaces at low
altitude present a small reflectance compared with the surfaces at
higher altitudes. This also implies that an aircraft at a high altitude will
present a larger signal than the background. Thus, under the condition
of enough water vapor content, most of the background noise will be
masked out in the 1.38 μm channel, and the aircraft signal is enhanced,
which is just what is needed. Fig. 2(a) and (d) provide an example.
Fig. 2(a) is a true color composite image (red, green and blue bands)
and (b) is the OLI 1.38 μm band. The white point in the center of
Fig. 2(d) is a cruising aircraft. It is obvious that the aircraft is difficult to
be automatically detected in Fig. 2(a), a true color image with complex
background information. In fact, for a cloudy scene, or over bright
surface types e.g. snow, city, etc., it is extremely difficult to identify the
aircraft even by manual inspection. However, due to the strong ab-
sorption of water vapor in the 1.38 μm band, the background signals are
greatly attenuated, while the signal of the cruising aircraft at high al-
titude is less influenced. Therefore, it is easy to identify an aircraft using
this channel. As shown in Fig. 2(b), a cruising aircraft with contrail
cirrus behind can be readily identified.

Fig. 2(a) and (d) demonstrate an ideal situation that no cloud is in
the sky and the vapor content is large enough to mask the ground in-
formation. In general, scenes covered by cloud or with a dry atmo-
sphere in winter are more common, as shown in Fig. 2 (b), (e) and (c),
(f) respectively. Fig. 2(b) is an image obtained in a dry atmosphere, and
the 1.38 μm channel failed to mask the ground information, which is

Fig. 1. Simulated reflectances for five types of background surfaces at altitudes
of 0 km, 5 km, 10 km. Spectral information of these materials was obtained
from the NASA Jet Propulsion Laboratory (JPL) spectral library (Baldridge
et al., 2009).

Fig. 2. (a), (b) and (c) are Landsat 8 OLI true color images, (d), (e) and (f) are images of the OLI band 9. Data of (a), (b), (c) were obtained on 13 February 2015, Path
121/Row 38; 1 April 2017, Path 127/Row 32; and 30 April 2017, Path 121/Row 036, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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presented in Fig. 2(e). In practice, there is no aircraft in the scene of
Fig. 2(b), but Fig. 2(e) indicates the existence of aircrafts. For example,
white points shown in the white rectangles of Fig. 2(e) look like aircraft,
but they are indeed the objects of land with high reflectance in 1.38 μm
channel. Fig. 2 c) is an image obtained in cloudy and moist conditions,
Fig. 2(f) is the corresponding image of the 1.38 μm channel. The white
pixel surrounded by the white rectangle on the right is an aircraft, while
the other one in the left white rectangle is not an aircraft. Obviously,
the left one leads to a great difficulty to identify the aircraft correctly.
Thus, in order to detect aircrafts for general scenes accurately, the al-
gorithm should work not only for ideal situations, but also for cloudy
and dry atmospheric conditions.

2.2. Cloudy scene

As shown in Fig. 2, the shape of an aircraft presented in the image is
similar to a point. According to the theory of point detection in digital
image processing, an effective operator to detect isolated points is the
Laplacian operator (Al-Amri et al., 2010). The Laplacian operator is a
second order differential operator, which is described in Eq. (1).
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the x and y spatial axes respectively. Rather than using the Laplacian
directly, this study conducted image segmentation first, and then some
morphological rules were adopted to identify aircraft. Image segmen-
tation was carried on using the new combination of the Sobel and La-
placian operator (we call it SL), as shown in Eq. (2).
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Eq. (2) means that the Sobel operator f x y( , )sobel (Gonzalez et al., 2008)
is used to process the image of the OLI band 9 first, then the Laplacian
∇ f x y( ( , ))sobel

2 is used to segment the result of the Sobel operator, and
g (x, y) is the final segmentation result. After differentiating Eq. (1) with
respect to x , y, Eq. (2) can be written as
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Usually, first-order derivatives generally produce thicker edges in
an image, and second-order derivatives produce a stronger response to
fine detail, e.g. thin line, isolated point. Second-order derivatives are
stronger in enhancing sharp changes so that it cannot be used to obtain
the full edge of the objects in the OLI image directly, such as, cloud,
aircraft etc. But by using the Sobel operator to produce the thicker edge
first (Gonzalez et al., 2008), the second-order derivative does not

Fig. 3. (a), (b) and (c) are images of the OLI band 9; (d), (e) and (f) are images of Sobel filter for (a), (b) and (c); (h), (i) and (j) are images of Laplacian filter for (a),
(b) and (c); (k), (m) and (n) are images of SL filter for (a), (b) and (c).
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perform as strong as when used alone, and the full edge of the aircraft is
obtained reasonably. Besides, the reason why the Sobel filter (2-di-
mensional mask) is adopted instead of the first-order derivative op-
erator (1-dimensional mask) is that the Sobel operator is symmetric
about the center point and produces a thicker edge than the first-order
derivative operator. Fig. 3 illustrates these points.

Fig. 3(a) and (b) are magnifications of the image part including
aircrafts as shown in Fig. 2(d) and (f), Fig. 3 (c) is the magnified image
of the white rectangle on the left of Fig. 2(f). As can be seen in Fig. 3(d),
(e), and (f), Sobel filter produces thicker edges for not only the aircrafts,
but also clouds. The Laplacian results presented in Fig. 3(h), (i) and (j)
indicate the stronger response in enhancing sharp change, hence the
narrower edges are obtained. The images in Fig. 3(h) and (i) demon-
strate that the Laplacian may detect aircrafts well. Specifically, after
using the Laplacian to filter the image of the OLI band 9, if the points
with DN value greater than 500 is surrounded by a closed edge with
negative points (four neighborhoods), then the points will be re-
cognized as aircraft. This detection rule is called RULE1. However,
Fig. 3(j) indicates that RULE1 may cause false alarm under a cloudy
scene, as the point of the aircraft in Fig. 3(j) presented similar feature
with RULE1. On the other hand, Fig. 3(a) and (k), (b) and (m) indicate
that the SL detects the edge of the aircraft well. The point of cloud
which was falsely segmented by the Laplacian, as shown in Fig. 3(j), is
not falsely segmented by the SL, and there is no notable edge observed
in Fig. 3(n). Besides, the SL provides the maximum DN value of the
aircraft in the image of the 1.38 μm channel, as the dark points shown
in the center of Fig. 3(k) and (m). The dark point is called the maximum
value point (MVP), and the maximum DN value of aircraft in the image
of the 1.38 μm channel is called the maximum value point of aircraft
(MVPA). In this study, the rule used to segment the potential aircraft
from the image was that the value of MVP was less than −500, and the
MVP was surrounded by a dark edge with DN value less than −100.

After obtaining the segmented image of potential aircraft, we used a
rule to determine whether the segmentation result can be identified as
an aircraft, as shown in Eq. (4).
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where Raspis the aspect ratio of the segmented image, Nairc indicates the
pixel number of potential aircraft in the segmented image (the white
pixels with DN value great than 0 were surrounded by the dark edge, as
shown in Fig. 3(k) and (m)), Rpixindicates the ratio of Naircand the total
pixel number of the segmented image (the points of the dark broad are
not included), DNMVPAis the DN value of MVPA, Sis a square with a
width of 15 pixels and at the center of MVPA, Max S( )is the maximum
pixel value of the S. Aircraft is the aircraft detection result.

Besides, in summer, the isolated ice clouds in some images of the
OLI band 9 in South America are similar to aircraft. In this case, false
alarms would be produced when using Eq. (4). To overcome this pro-
blem, the feature of cloud shadow was used to eliminate the false
alarms in this study. An isolated ice cloud and a fast-moving aircraft
present similar reflectance, but the slow-moving cloud will cause more
prominent shadow than the fast-moving aircraft. Hence, in the summer
of South America, when the DN value of MVPA’s four neighbor is less
than the mean DN value of the S, the object will be identified as cloud.

2.3. Dry atmospheric condition

Vapor content is the main factor influencing the background signal
of the 1.38 μm channel. When the vapor content is not large enough to
mask the background signal, the background can be seen clearly in the
OLI 1.38 μm channel, as shown in Fig. 4(a). Fig. 4 is the Landsat 8
image obtained on April 1, 2017, Path 127/Row 032, geolocation of
109.636/40.647, and the total column precipitable water vapor is
about 0.33 g/cm2 for this area (data source: MODIS MOD05 L2 vapor
content data (Kaufman and Gao, 1992)). As can be seen in Fig. 4(a), due
to the low vapor content, the OLI 1.38 μm channel fails to mask the
background information so that the surface objects can be observed
easily. As a result, false alarms labeled by the white rectangles in

Fig. 4. (a) is an image of the OLI band 9 under low vapor content. The white rectangles shown in (a) are the positions of false alarm when Eq. (4) was used to conduct
the detection; (b) is an image of the OLI 2.1 μm channel; (c) is the enlarged diagram of the leftmost white rectangle in Fig. 4 (a); (d) is the enlarged diagram of the
white rectangle in Fig. 4(b); (e) presents an image of the OLI band 9 with an aircraft under low vapor content; (f) presents an image of the OLI 2.1 μm channel with
the same location as (e).
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Fig. 4(a), were caused by those high reflectance pixels when using the
method presented in Eq. (4). In practice, the water vapor content is not
always sufficiently large to mask the background signal in some regions
with high altitude, or in the winter. Hence, in order to make the
1.38 μm channel applicable over these regions with extremely low
vapor content, an extension of the current method is proposed.

To make the algorithm perform well in a dry atmosphere condition,
the OLI 2.1 μm channel and the push broom characteristic of OLI were
used. As an atmospheric window band, 2.1 μm is less attenuated by
aerosol, thin cirrus etc. Hence, it is often used to retrieve aerosol optical
thickness (Levy et al., 2007) and remove thin cirrus contamination of a
solar spectral band between approximately 0.4 and 1.0 μm (Richter
et al., 2011; Gao and Li, 2012). Fig. 4(a) and (b) show images of the
same geographical position in the OLI 1.38 μm and the 2.1 μm channels
respectively. As can be seen in Fig. 4(a) and (b), pixels with large re-
flectance in the 1.38 μm channel show large reflectance in the 2.1 μm
channel too, and pixels with small reflectance in both Fig. 4(a) and (b)
present similar reflectance. Besides, according to the JPL spectral li-
brary (Baldridge et al., 2009), pixels of object with high reflectance,
such as man-made buildings, standalone etc. in 1.38 μm have similar
reflectance in 2.1 μm.

The focal plane array of OLI consists of fourteen individual focal
plane modules aligned in a staggered line (Knight and Kvaran, 2014).
Each focal plane module includes nine rows of detectors for the OLI
nine channels, which are stacked in this order: panchromatic, blue,
coastal/aerosol, NIR, red, green, SWIR2, SWIR1, and cirrus in track
direction (Irons et al., 2012). The stack order of the nine channels and
the push broom feature of OLI cause the slight offset for each band
image if no additional correction was performed. For example, for the
data of Landsat 8 collection 1 that had been registered to the ground, a
stationary object has the same numbers of column and row in each

band. But for a fast motion object, e.g. a flying aircraft, due to no
correction for it, the object may have different numbers of column and
row in each band. This indicates that for a pixel with large reflectance
in the image of the OLI 1.38 μm channel, if the pixel represents the
surface object, the pixel with the same column and row in the image of
the OLI 2.1 μm channel will give large reflectance too. Fig. 4(c) and (d)
present this feature. Fig. 4(c) is the enlargement of the leftmost white
rectangle of the OLI 1.38 channel in Fig. 4(a), and (d) is the enlarge-
ment of the OLI 2.1 channel of the white rectangle at the same location
in Fig. 4(b). As it can be seen from Fig. 4(c) and (d), the number of row
and column for the maximum DN value of Fig. 4(c) and (d) are the
same. But this feature is not true for a flying aircraft in the images of the
1.38 μm channel and the 2.1 μm channel, as shown in Fig. 4(e) and (f).
Fig. 4(e) is the image of the OLI band 9 with an aircraft under vapor
content of 0.33 g/cm2, Fig. 4(f) is the image of the OLI 2.1 μm channel
with the same location as Fig. 4(e). Due to the imaging characteristic
shown above, an aircraft in the OLI band 9 could not be found at the
same location of the OLI 2.1 μm channel.

Considering the features discussed above, this study utilized these
features to make the algorithm work under low vapor condition. If
pixels were identified as aircraft by Eq. (4) and vapor content was less
than a threshold, Eq. (5) was used to eliminate false alarms.

= ⎧
⎨⎩

<
Aircraft

true DN AccPer Hist S
false otherwise

, ( ( ))
,

i j, 0.95

(5)

Here i j, is the numbers of row and column of MVP. DNi j, is image DN
value of the 2.1 μm channel with row and column of i j, . S is a square
with a width of 15 pixels and at the center of i and j. Hist S( ) is the
histogram result of S. AccPer Hist S( ( ))0.95 is the DN value which accu-
mulation percentage in the Hist S( ) is greater than 0.95. According to
the simulation and practical observation of the OLI band 9 data, the

Fig. 5. (a) (d) are true color images; (b) (e) are the images of cirrus channel; (c) is the detection result by RULE1, (f) is the detection result by Eq. (4); red points in (c)
and (f) are flying aircrafts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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threshold of vapor content is set to 0.8 g/cm2. After using Eq. (5) to
conduct the detection, the false alarms showed in Fig. 4(a) were totally
removed, and the final test result can be seen in Fig. 5.

3. Validation and application

Validation is a necessary part for an algorithm to be used con-
fidently. The detailed algorithm used in this study was presented in
Section 2. In this section, validation of the accuracy of the algorithm is
conducted.

3.1. Data and processing

Regions well covered by the ground aircraft tracker were selected as
the validation regions in the study, and manual interpretation of
Landsat 8 scenes and the real-time aircraft monitoring data from
Flightradar24 were obtained as the true aircrafts information in the
validation. The atmospheric water vapor content data used is from the
European Centre for Medium-Range Weather Forecasts (ECMWF) re-
analysis data ERA-Interim (Dee et al., 2011), of which, the daily water
vapor content data was used.

The real-time aircraft monitoring data from Flightradar24 (https://
www.flightradar24.com/) was adopted as independent verification of
aircraft location. In consideration of the OLI band 9 with a resolution of
30m, thus, aircrafts with length less than 30m were removed from the
real-time aircraft monitoring data. Besides, aircrafts with flight altitude
less than 5 000m were also removed from the real-time aircraft mon-
itoring data. The manual interpretation was carefully done by com-
bining the image features of the OLI 1.38 μm and 2.1 μm channels, and
the real-time aircraft monitoring data was used as reference. For those
aircrafts covered by the high cloud and thus could not be observed from
the image of the OLI 1.38 μm channel, but could be found from the real-
time aircraft monitoring data, the manual interpretation would exclude
them.

Besides, except for the influence of high cloud, it should be noted
that the real-time flight data did not cover all the aircrafts for some
reasons. First, not all the aircrafts were equipped with automatic de-
pendent surveillance-broadcast (ADS-B) or similar devices. Except this
reason, some aircrafts were limited for security reasons. Thus, the result
of manual interpretation may differ from the real-time flight data. In
this study, due to the algorithm being based on the 1.38 μm channel
image, the final accuracy assessment would use the result of manual
interpretation as the validation data, and the real-time aircraft mon-
itoring data was selected as a reference.

3.2. Results

Two examples of Landsat image are presented in Fig. 5, of which,
one was obtained under enough vapor content, and another one was a
scene in a very dry atmosphere. Landsat 8 image used in the test ob-
tained on April 30, 2017 with geolocation of latitude 34.693, longitude
118.161, Path 121/Row 36 was one of the examples imaging in a
condition of enough vapor content, as shown in Fig. 5(a), (b) and (c).

Fig. 5(a) is the true color composite image (red, green and blue bands),
Fig. 5(b) is the image of the cirrus channel, and Fig. 5(c) is the aircraft
detection result only used by RULE1. From Fig. 5(a) and (b), it can be
seen that this Landsat image is composed of city, cropland, forest, water
and high cloud etc.

Real-time aircraft monitoring data in the time ranging from
02:41:00 to 02:43:00 were selected to compose the flight paths, as the
red lines shown in Fig. 5(a) and (b). The imaging time of the center
scene of this Landsat image was 02:42:17, thus the aircrafts identified
in the study should be the same here along the flight paths created by
the real-time aircraft monitoring data. The aircraft shown in Fig. 2(f) is
located in the right-bottom corner, and the aircraft likely to be a cloud
as shown in Fig. 2(f) is represented by the yellow points in Fig. 5(a) and
(b).

Green circles shown in Fig. 5(a) and (b) are aircrafts identified by
manual interpretation and obtained by Eq. (4) respectively. As can be
seen from Fig. 5(a) and (b), the real-time aircraft monitoring data and
the manual interpretation result show similar result, and just one air-
craft difference exists between them. In fact, the real-time aircraft
monitoring data lost one aircraft in the region of this OLI data. Com-
pared with the manual interpretation result, the results shown in
Fig. 5(a) indicate that Eq. (4) detects aircrafts reasonably well. The
detection by RULE1, Fig. 5(c), caused a large number of false alarms for
the region covered with high cloud, which is shown in the right-bottom
region of Fig. 5(b). Besides, a large number of pixels near the edge of
the image were also falsely identified as aircrafts. The reason for this
problem was that the drastic gray change near the edge pixels presented
similar feature as the aircraft shown in the image.

Landsat 8 OLI data obtained under low vapor content was partly
used in Fig. 2(b) (e) and Fig. 4, and this data was also selected to
conduct the test, as shown in Fig. 5(d), (e) and (f). The results of manual
interpretation and detection algorithm are presented in Fig. 5(d) and
(e), as the green circles indicated in figures. Red lines are the real-time
flight paths of aircrafts. The aircraft likely points shown in Fig. 2(b), (e)
and Fig. 4(a) are labeled in Fig. 5(e) with red and yellow circles. As can
be seen from Fig. 5(e), none of these points are falsely recognized as
aircrafts. Since these data were obtained under low vapor content, the
background objects in the OLI band 9 could be observed clearly. When
the OLI band 7 was not used to enhance the detection, that is to say the
test was only conducted based on Eq. (4), a large number of false alarms
occurred, as shown in Fig. 5(f). But when the OLI band 7 was used to
conduct the detection, all the false alarms were eliminated and no ad-
ditional leakage was caused, as the green circles and the real-time
aircraft flight paths shown in Fig. 5(d) and (e).

Quantitative validation of the algorithm was done by using 65
Landsat 8 images obtained from June 1, 2017 to July 30, 2017 over
different regions: China, America, Europe, Africa and Australia. These
images include a variety of background surfaces, e.g., desert, urban,
forest, grass, and mountains, different coverage of clouds and different
water vapor content. Among these regions, the OLI images used in
China are more covered by high cloud than other regions. The water
vapor content in Australia is relatively low, but in America, Europe and
China, the vapor contents are relatively ample. All the images were

Table 1
Results of accuracy validation for the algorithm.

Region Path/Row Image Num. Aircraft Num. Manual Real-Time Accuracy (%)

False Leakage False Leakage False Leakage

America 27-28/33-34 14 153 1 3 3 8 0.65 1.96
Europe 197-198/26-27 12 229 2 6 5 22 0.87 2.62
China 123-124/38-39 14 79 0 6 3 54 0 7.59
Australia 93-94/84-85 12 27 0 1 2 2 0 3.70
Africa 171-172/47-48 13 78 0 2 2 2 0 2.56
Total 65 566 3 18 15 88 0.532 3.18
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manually interpreted, and the real-time aircraft monitoring data was
used as the validation data, as shown in Table 1.

The detailed comparison data for the manual interpretation and
real-time aircraft monitoring data was divided into two groups (false
alarm and leakage) to evaluate the accuracy of algorithm better. The
false alarm meant the algorithm in this study recognized other objects
as aircrafts, the leakage indicated the algorithm failed to identify air-
crafts. The columns of false and leakage in Table 1 show the false alarm
and leakage for the algorithm respectively. The data summarized as
‘Manual’ column was created through manual interpretation of aircrafts
from evaluated images, whereas ‘Real-Time’ represents the real-time
aircraft monitoring data. Besides, as mentioned above, the mean ac-
curacy of the algorithm was obtained by using the manual interpreta-
tion results as real data of the flying aircrafts, as the column of Accuracy
shown in the table.

As shown in the table, the algorithm presents a large leakage when
compared to the real-time aircraft monitoring data over a cloudy re-
gion, e.g. China. This was due to the reason that in a cloudy scene, the
signal of the aircraft was often masked by high cloud so that the aircraft
could not be found from the image of the 1.38 μm channel. On the other
hand, the high cloud also increased the background reflectance, which
made the reflectance difference between the aircraft and background
not noticeable. The separation and recognition of the aircraft for a
cloudy scene were more difficult than for a clear scene. Thus, leakage of
manual interpretation in China was large, with the percentage of
leakage 7.59%. But for other regions with less cloud coverage, e.g.
Africa, Australia, America, the percentages of leakage were lower than
it in China. False alarms of the real-time aircraft monitoring data in-
dicated that the algorithm recognized 15 other objects as aircrafts in all
the test data. However, the result of the manual interpretation showed
that only 3 aircrafts were falsely recognized. This difference was due to
that the real-time aircraft monitoring data failed to monitor the air-
crafts caught by the OLI 1.38 μm channel, and the reason for this has
been described in the beginning of Section 3.1.

Among the regions under the condition of a dry atmosphere, e.g.
Australia, there are no notable false alarms produced. The percentages
of leakage over these regions were lower compared to the percentage of
leakage in the region of China, for the region of Australia the percen-
tage of leakage was 3.7%. This indicates that using the OLI 2.1 μm
channel to enhance the test would not decrease the leakage sig-
nificantly. In general, the mean percentage of the leakage was 3.18%
for the all test data, and the mean percentage of false alarm was

0.532%. This meant the algorithm presented in the study achieved a
reasonable accuracy.

3.3. Application

Landsat 8 OLI images obtained from June 15, 2016 to June 30, 2016
(total number of these scenes is 11 430) were selected to produce the
activity map of aircrafts globally. If the Sun elevation was less than 5
degree, the scene would be removed from the test. The monitoring
result of aircrafts is shown in Fig. 6. In general, most of these scenes
were obtained under a condition with enough vapor content, but the
scenes over Greenland, Tibet, or Southern Africa, Australia and the
Andes in the Southern America were obtained under a dry atmosphere.
As can be seen, the algorithm performed well over the regions with a
dry atmosphere, because there is no dense concentration of aircrafts
over these regions.

As shown in Fig. 6, most of the aircrafts are distributed over the
Northern Hemisphere, and in the Southern Hemisphere, aircrafts are
mainly located over Southern Africa, and the center of South America.
In the North Hemisphere, the most densely areas of aircrafts are
America in the North America, Europe, and East Asia. As we can find
from Fig. 6, the density of the aircraft is significantly related to eco-
nomic development level of the region, the better its economy, the
greater the number of aircrafts.

July is winter in the Antarctica and Landsat images in this region are
unavailable, thus there is no aircraft found in this region. Aircrafts
shown in the northern regions, e.g., Greenland, north of Russia, Canada,
are fairly dense. The reason for this is that most of intercontinental
flights prefer to pass through the Arctic to reduce the length of flights.

Fig. 6. Aircrafts detected between June 15 and 30, 2016 from Landsat OLI images.

Table 2
Distribution of aircrafts for each continent.

Region Aircraft number Area (10 000 km2) Density (10 000 km2)

Asia 3640 4457.9 0.82
Africa 586 3006.5 0.19
Europe 3142 993.8 3.16
Oceania 262 768.7 0.34
Antarctica / / /
North America 5123 2425.6 2.11
South America 598 1781.9 0.34
Total Ocean 3936
In all 17287

F. Zhao et al. ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 176–184

182



Besides, as a polar satellite, Landsat 8 has a shorter revisit time at polar
regions than equator, thus, in an entire repeat cycle of 16-day, the polar
regions are covered more than once.

The amount of the aviation-induced particles and gases emissions,
such as, carbon dioxide (CO2), water vapor, nitrogen oxides, black
carbon etc., and contrail cirrus that caused radiative forcing are mainly
determined by the number of the flying aircrafts. Hence, a simple sta-
tistic of distribution of aircrafts for each continent was made, the results
are listed in Table 2. North America presents the largest number of
aircraft compared to other continents, and Oceania has the smallest
number of aircrafts among all the continents. Average aircraft density
of each continent was calculated. As can be seen from Table 1, Europe
has the densest flight activity with the value of 3.16 aircraft per 10
000 km2, and Africa has the lowest flight activity with the value of 0.19
aircraft per 10 000 km2. In all, a number of 17,287 aircrafts were de-
tected from the 16-day of Landsat 8 images.

3.4. Discussion

The method of real-time aircraft monitoring based on the ground
devices, e.g. radar, ADS-B receiver, is an effective way to provide the
tracking information of aircraft. The method in this study relied on the
Landsat 8 cirrus band presented a new way to monitor the global air-
craft activity. These two methods are based on different theories, thus it
is necessary to make a comparison about main differences between
these two methods.

Firstly, these two methods have different temporal resolutions. The
algorithm of this study used the Landsat 8 band 9 as the data source,
and the Landsat 8 sensor can only obtain the image in a certain area
when it passes. Therefore, this study can only capture the flying activity
at the moment of satellite passing by, and the repeat cycle is as same as
the Landsat 8 (16 days). But the real-time method can monitor the flight
activity continuously as long as the ground devices perform well.
Secondly, they differ in monitoring coverage. The real-time monitoring
method requires enough and stable ground coverage for trace devices
and stable internet access. In other words, it could not provide any
information of the flight activity for regions with poor coverage for
devices. The Landsat 8 has the ability of global observation, thus it is
not limited to a specific area.

Finally, in consideration of security and privacy, some aircrafts

observed by the ground devices are filter by the data provider. By
contrast, the method in the study was not subject to such problem and
could provide more comprehensive information of the flight activity. Of
course, it still faces some challenges: (a) the data source used in the
study is Landsat 8 band 9 with a resolution of 30m, which means that
aircraft with resolution around 30m or less than 30m may not be de-
tected; (b) as described in Section 2, the lower the altitude, the weaker
the signal of aircraft, hence, aircraft with low altitude will not be easily
detected by this method; (c) if an aircraft flies below the high cloud
with large optical depth, the signal of aircraft will be masked. As a
result, it increases uncertainty for the algorithm to separate and re-
cognize the aircraft. Also, if there exist the high cloud or other objects
(e.g. volcano ash, balloons etc.) with shape like aircraft, the algorithm
may identify them falsely.

The Landsat 8 images over northern Africa and West Asia from June
20, 2017 to July 6, 2017, and real-time flight data were selected to
describe these main differences, as shown in Fig. 7. No matter the size
and flight altitude, all the real-time flight data was selected, and this
data was matched with the image of Landsat 8 band 9 in term of the
imagining time and coverage. The matching results were divided into
four parts: aircrafts identified by both of two methods (yellow points),
aircrafts detected only by the method in this study (green points), air-
crafts with size less than 30m which traced by the ground devices only
(red points, 12 aircrafts left out by this study also fell into this part), and
aircrafts with flight altitude less than 5000m which traced by the
ground devices only (blue points).

As can be seen from Fig. 7, due to the lack of coverage for ground
devices, the real-time flight data failed to monitor aircrafts around the
Sahara, but the method presented in this study was not influenced by
the coverage problem, as the green points shown in Fig. 7. For the re-
gion with nice coverage for ground devices, e.g. Middle East region,
regions out of Sahara, as the yellow points shown in Fig. 7, the result
from real-time data was reasonable. Besides, for aircrafts with small
size less than 30m or low altitude (5000m), the study failed to detect
them, as the blue and red points shown in Fig. 72 respectively. In
practice, the aircraft mainly fly at the cruising height greater than
5000m during the entire flight activity, and the stages of takeoff and

Fig. 7. Aircrafts detected by the real-time data and the study over northern Africa and West Asia, gray polygons are the border of Landsat images.

2 For interpretation of color in Fig. 7, the reader is referred to the web version of this
article.
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landing are small parts of the whole flight. This means only few air-
crafts will be lose by the study. In general, the method of this study was
suitable to monitor cruising aircrafts with size no less than 30m around
the world.

4. Conclusions

The water vapor absorption channel near the center of 1.38 μm is
not only useful for cirrus cloud detection, but also for detection of flying
aircraft. The Landsat 8 OLI band 9 originally designed for cloud de-
tection is highly effective for monitoring the activity of the flying air-
craft. In this study, by using the combination of the Laplacian and Sobel
operators, potential aircrafts were segmented from the Landsat 8 OLI
band 9 images, and some features were used to identify the aircraft. The
OLI band 7 and the push broom characteristic of OLI were used to make
the algorithm work under a dry condition. Accuracy assessment based
on 65 Landsat 8 images indicated that the algorithm achieved a rea-
sonable accuracy, the percentage of leakage was 3.18% and the per-
centage of false alarm was 0.532%. The application of the method in-
dicated that the global ability of monitoring aircraft from moderate
resolution satellite data is for the first time established.
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