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A B S T R A C T   

Satellite-based remote sensing might provide a potential way for monitoring the global flight activities and their 
environment impacts, while the remote sensing community pays less attention on it. In this study, we presented a 
flying aircraft detection algorithm which effectively handles the noise on Landsat 8 OLI cirrus band caused by 
energetic particles in the South Atlantic Anomaly region, and a new framework based on cloud infrastructure was 
proposed to map global flying aircraft activities from 2013 to 2020 using Landsat 8 Operational Land Imager 
(OLI) data. Validation was performed for 254 scenes recorded for various cloudy and surface conditions and 
vapor contents. The overall percentages of false alarms and omissions for these validation images were 5.37% 
and 7.80%, respectively. Limited to the resolution of Landsat data, cloud, the size and flight altitude of the 
aircraft, 42.99% flying aircraft were undetected compared with the FlightRadar24. Instead of using the Google 
Earth Engine, we employed more flexible cloud computing techniques, Google Cloud Storage and Google 
Calculation Engine, to construct our framework for the larger volume data. A total of 1.94 million Landsat images 
were analyzed to obtain the activities maps, and the results showed that globally flying aircraft increased by 
25.85% from 2014 to 2019 (the year 2013 was excluded for the low coverage of Landsat scenes), with an annual 
rate of 4.31%. In 2020, flying aircraft were reduced by 40% compared with 2019 due to the influence of COVID- 
19 and traveling restrictions, and Europe was the most severely affected by COVID-19, with an 84.59% decline of 
flying aircraft in April 2020. This study provides a unique long-term supplement to monitor aviation activities 
and their climate impact.   

1. Introduction 

Over the past decades (1960–2018), aviation, as the fastest and most 
efficient way for long-distance travel, has continued to grow, with rev
enue passenger kilometers (RPK) increasing from 109 to 8269 billion 
km/yr (Lee et al., 2021). Aviation emissions, e.g., carbon dioxide (CO2), 
nitrogen oxides (NOx), and contrail cirrus, present strong net (warming) 
effective radiative forcing (ERF), thus raising concern about the super
vision of flight activity and climate change impacts (Burkhardt and 
Kärcher, 2011; Sausen et al., 2005; Le et al., 2020; Skowron et al., 2021). 
Several studies have been conducted to understand and evaluate the 
impact of aviation on the climate system, but obtaining accurate results 
is still challenging (Penner, 1999; Kärcher et al., 2018; Skowron et al., 

2021; Lee et al., 2021). One of the main reasons is the lack of direct 
observation data of flight activity spatially and temporally. Hence, the 
simulation process in the evaluation models had to be simplified, which 
introduced an uncertainty in the simulation results (Minnis et al., 1999; 
Schumann 2012; Chen and Gettelman, 2013; Bock and Burkhardt, 2016; 
Kärcher et al., 2018). Moreover, an evaluation of the aviation industry 
rebound after the influence of COVID-19 or making reasonable policies 
to further reduce emissions also require accurate and timely information 
of flight activity, which remain scattered and intermittent ( Schumann 
et al., 2021). 

The most common ways to trace the activity of flying aircraft are 
ground radar and automatic dependent surveillance broadcast (ADS-B) 
receivers (Costin and Francillon, 2012). In theory, these two methods 
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may achieve the best accuracy for tracing aircraft, but have limited 
coverage on a global scale. Ground radar is usually placed at airports or 
at fixed positions to monitor specific regions. As a result, only 30% of 
flying aircraft can be tracked (Liu et al., 2020). The ADS-B receiver 
usually covers regions with frequent human activities, thus the coverage 
is generally poor for remote locations, such as oceans or desert regions. 
In addition, the small number of aircraft not equipped with an ADS-B 
device cannot be traced by an ADS-B receiver (Zhao et al., 2018). 

Satellite remote sensing provides another opportunity to monitor the 
activity of flying aircraft. High-resolution satellite images (e.g., Ikonos 
and World View), combined with morphological characteristics, ma
chine learning, or even deep learning technology can satisfactorily 
identify parked aircraft (Liu et al., 2013; Wu et al., 2015; Zhang and 
Zhang, 2017; Wei et al., 2020; Shi et al. 2021). Considering the very long 
repeat cycle and high expense, high-resolution satellite data are not a 
suitable data source for monitoring flying aircraft globally. Hence, it is 
often used to monitor parked aircraft at airports or military bases (Wu 
et al., 2020). 

Moderate resolution satellite instruments with relatively high repeat 
cycles and suitable resolution present a potential opportunity to monitor 
the global activity of flying aircraft, but until recently, few algorithms 
have been proposed to identify flying aircraft. The first state-of-art flying 
aircraft detection method proposed by Zhao et al. (2018) demonstrated 
the capability to detect flying aircraft using the Landsat 8 Operational 
Land Imager (OLI) cirrus channel (band 9). The algorithm uses the cirrus 
band located in the strong vapor absorption region. Due to the relatively 
high altitude of flying aircraft, the vapor between the aircraft and sat
ellite sensor is lower than that between the ground and the satellite 
sensor (Zhao et al., 2018). The signal from the ground will thus be 
greatly attenuated, while the signal from the flying aircraft will be less 
influenced. Further investigation found that the Landsat OLI cirrus band 
is heavily influenced by energetic particles from the space over the 
South American region, which brings in many false alarms. Another 
method detecting and measuring the speed of flying aircraft is to use the 
parallax effect caused by the push-room design of satellite sensors, as 
presented by Heiselberg et al (2019) and Liu et al (2020) for Sentinel 2 
Multispectral Instrument (MSI). Methods based on the parallax effect 
mainly rely on the reflectance difference between the background and 
the fast-moving objects, which may be influenced by the high reflec
tance, e.g., cloudy scenes, snow-covered landscapes, deserts, and even 
man-made surfaces. But this problem can be relieved by jointing other 
MSI bands, e.g., short-wave near infrared or cirrus bands (Liu et al., 
2020), or the velocity and position for the fast-moving objects (Heisel
berg et al., 2021). 

To trace and map the global activities of flying aircraft, an appro
priate detection algorithm is the essential, and the technology to hand 
such large amounts of historical Landsat data efficiently and rapidly is 
another challenge. This study aims to construct an appropriate detection 
algorithm and a cloud framework for the larger volume of data to map 
the global activities of flying aircraft. First, we improved the algorithm 
of Zhao et al. (2018) for the South Atlantic Anomaly (SAA) region to 
eliminate false alarms caused by energetic particles on the OLI cirrus 
band, thus making our method applicable globally. Then, careful vali
dation was performed to evaluate the performance of the algorithm. 
Finally, instead of using the Google Earth Engine (GEE), we used cloud 
computing, Google Cloud Store (GCS) and the Google Calculation En
gine (GCE) to construct our framework for handling the global Landsat 8 
OLI data. In all, 1.94 million Landsat 8 OLI images were analyzed relying 
on the proposed framework to map the global activities of flying aircraft 
from 2013 to 2020. 

2. Algorithm and improvement 

2.1. Algorithm 

Sitting in the region of a strong vapor absorption band, the 1.38 μm 

channel is quite useful for observing objects at high altitude, such as 
cirrus clouds, volcanic ash and flying aircraft (Gao and Kaufman, 1995; 
Frey et al., 2008; Xia. et al., 2015; Xia et al., 2018). In our previous al
gorithm, aircraft detection was divided into two scenes: dry scene and 
cloudy scene that is also called “normal scene” in this article. The dry 
scene means that the vapor is low (less than 0.8 g/cm2) and not large 
enough to mask the reflectance from the ground. The normal scene 
means that the vapor (greater than 0.8 g/cm2) is large enough to mask 
the ground reflectance, and includes clear-sky and cloudy scene in this 
study. 

According to the size of flying aircraft and the resolution of OLI cirrus 
band, flying aircraft in OLI cirrus band visibly are often composed of a 
small number of pixels, e.g., 2–12, similar to the outlier in the images. 
Hence, a composition of the Laplacian and Sobel operators, as presented 
in Zhao et al. (2018), is used to segment the potential aircraft. Eq. (1) is 
used to determine whether the segmentation result can be identified as a 
real aircraft in a normal scene: 

Aircraft=
{

true,Rasp>0.45andRpix>0.6and6<Nairc<15andDNMVPA>Max(S)
false,otherwise

(1)  

where Rasp is the aspect ratio of the segmented image, Nairc indicates the 
pixel number of a potential aircraft in the segmentation image, Rpix in
dicates the ratio of Nairc and the total pixel number of the segmentation 
image, MVPA is the maximum value point among the potential aircraft 
pixels, DNMVPA is the digital number (DN) value of the maximum value 
point among the potential aircraft pixels, S is a square with a width of 15 
pixels and the center of MVPA, and Max(S) is the maximum pixel value 
of S. Aircraft is the result of aircraft detection. 

The push-room designation of the OLI sensor makes the inter-band 
offsets for objects with a high moving speed. This implies that the 
flying aircraft in each band of OLI are presented at different row and 
column numbers, while ground objects share the same row and column 
numbers. The equation shown in Eq. (2) is used to further remove false 
alarms under a low vapor scene (dry scene). 

Aircraft =
{

true,DNi,j < AccPer0.95(Hist(S2.1) )

false, otherwise (2)  

Here, i, j is the row and column numbers of MVPA, DNi,j is the image DN 
value of the 2.1 μm channel with a row and column of i,j, S2.1 is a square 
with the center at i and j, and a width of 15 pixels, and Hist(S2.1) is the 
histogram result of S. AccPer0.95(Hist(S2.1) ) presents the DN value in 
which the accumulation percentage in Hist(S2.1) is greater than 0.95. 

2.2. Improvement of the SAA region 

The SAA is a region where the inner Van Allen belt dips down to an 
altitude of 200 km and is closest to the Earth’s surface over the South 
Atlantic Ocean (Finlay et al., 2020). This phenomenon is caused by the 
tilted angle of approximately 11◦ between the Earth’s rotational axis of 
rotation and the Earth’s magnetic axis, which is the axis of symmetry for 
the Van Allen radiation belts. Due to the weak Earth magnetic field in 
the SAA region, orbiting satellites and their sensors are exposed to a high 
flux of energetic particles, thus leading to bright spots in the obtained 
images. Except for the southern Atlantic Ocean and part of South 
America, polar-orbiting satellites crossing the north and south poles may 
be influenced by energetic particles. 

As shown in Fig. 1(A)–(H), OLI band 9 in the SAA region is heavily 
contaminated by energetic particles, and some bright spots formed from 
several pixels can be observed from the images. The noisy features share 
similar shapes and sizes with aircraft, as shown in Fig. 1(I)–(P), so these 
features can be easily misclassified as aircraft with the current algo
rithm. However, these noisy points usually appear in only one channel at 
the time; therefore, it is impossible to correct this problem using inter- 
band information. 
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After being hit by energetic particles, the affected detectors recoil in 
bright target recovery, and one or more surrounding dark pixels can 
usually be observed (Elamaran et al., 2018). Besides, as the dark pixels 
are the response of the bright pixels, the darkest pixel and the brightest 
pixel are often adjacent. Additionally, the brighter the bright pixels are, 
the blacker the black pixels. As shown in Fig. 1(A)–(D), the bright points 
are often surrounded by one or more dark pixels, regardless of the shape 
of the bright point. Fig. 1(a)–(h) and (i)–(p) are the enlargements of the 
noise pixels in Fig. 1(A)–(H) and aircraft in Fig. 1(I)–(P), respectively. A 

square root stretching method was used to enhance the visualization for 
(a)–(p), but a 2% linear stretching for (A)-(P). As seen from Fig. 1(a)–(h), 
the darkest pixel and the brightest pixel are almost 4-adjacency, while 
the 4-adjacency is less observed for the pixels of the aircraft (except for 
Fig. 1(p)). This feature is significantly different from the flying aircraft in 
the images, even though the shade of aircraft may be present as dark 
pixels in the images. In this study, we used this feature to further 
eliminate false alarms in the SAA region. 

First, we used the equation below to segment the aircraft pixels from 

Fig. 1. Pixels of bright spots contaminated by energetic particles ((A)-(H)) and aircraft ((I)-(P)), and the corresponding magnified images ((a)-(p)). Notes: (A)-(H) are 
captured on October 2, 2019 with World Reference System (WRS) path/row of 221/73 over Minas Gerais, Brazil, (I)-(L) are captured on April 3, 2015 with path/row 
of 39/36 over Las Vegas, U.S., (M)-(P) are captured on May 25, 2017 with path/row of 121/36 over Linyi, China. (a)-(p) are the magnified images for (A)-(P), 
respectively. Bar1, Bar2, and Bar3 are grayscales for (A)-(H), (I)-(L) and (M)-(P). 
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a square centered on MVPA with a width of 5 pixels: 

Pixelair =

{
DNs > 1.05 × Mean(Ss5)

false, otherwise (3)  

where Ss5 is the square centered on MVPA with a width of 5 pixels, 
Mean(Ss5) is the mean DN value of Ss5, DNs is the DN value of pixel 
within the Ss5, and Pixelair is the pixels forming the aircraft. The value of 
1.05 is obtained by experiences repeatedly, to minimize the false alarms 
and omissions. 

Then, dark pixels surrounding Pixelair can be obtained by Eq. (4). 

Pixeldark =

{
DNsr < Mean(S)
false, otherwise (4)  

where DNsr is the DN value of the pixel within S and surrounding Pixelair, 
Mean(S) is the mean DN value of S, and Pixeldark is the dark pixel sur
rounding Pixelair. 

The rule with two parts was used to eliminate false alarms caused by 

energetic particles. (I) if the darkest pixel among Pixeldark is one of the 4 
adjacent brightest pixels, it belongs to the potential aircraft pixels. Be
sides, for the bright spots composed of a small number of pixels, as 
shown in Fig. 1 (a) and (b), we adopted (II) that the potential aircraft is 
identified as a noise point when the pixel number of Pixelair is less than 2. 
We call the method presented in this section the SAA method for aircraft 
identification. 

Fig. 2 shows a scene over South America for which the Landsat 8 OLI 
image is heavily contaminated by energetic particles. This image ob
tained on October 2, 2019, with a path/row of 221/73 was used to 
detect flying aircraft with or without the SAA method, and the detection 
results display significant differences (Fig. 2(c) and (d), respectively). 
The lines presented in Fig. 2(b) are the flight paths from FlightRadar24 
during the Landsat imaging time. The red and yellow lines indicate that 
no flying aircraft signal on OLI band 9 is observed along the flight paths 
because of the low cruise altitude (less than3500 m) or small size of the 
aircraft. The orange lines present the detected flying aircraft along the 
flight paths, and thus, the two aircraft tracking methods achieve the 

Fig. 2. Image and detection results of flying aircraft in the SAA region: (a) true color image of Landsat OLI data, (b) the image of OLI band 9 with flight paths 
overlaying, (c) the result with the SAA method, and (d) the result without using the SAA method. 
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same results (Fig. 2(b) and (c)). The red points shown in Fig. 2(c) and (d) 
are the detected flying aircraft from OLI data. 

As is evident from Fig. 2, the SAA method just falsely identifies one 
aircraft, the red point at the top left of Fig. 2(b) and (c), while without 
using the SAA method, a large number of false alarms appear (Fig. 2(d)). 
Overall, the SAA method eliminates most of the influence of energetic 
particles, and a more reasonable result is obtained. 

2.3. Data and framework 

In this study, the detection algorithm was applied for Landsat 8 
Collection 1 Level-1 data (Irons et al., 2012). Landsat 8 is the eighth 
satellite in the Landsat program, which was launched on Feb. 11, 2013 
and carries OLI and thermal infrared sensor (TIRS) instruments to pro
vide global coverage every 16 days. The OLI observes the Earth at two 
resolutions, 15 m for the panchromatic band and 30 m for the multi
spectral bands, with a swath width of 185 km. A total of 1.94 million OLI 
images from April 1, 2013 to December 31, 2020 were selected to map 
the activities of global flying aircraft. 

The hourly vapor content data (total_column_water_vapor) from the 
European Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis 5th (ERA5) were used to provide detailed water vapor in
formation. ERA5 is the fifth generation of the ECMWF atmospheric 
reanalysis of the global climate, which replaced ERA-Interim to provide 
a highly accurate numerical description of the recent climate (Hersbach 

et al., 2020). The ERA5 vapor data include the atmospheric total vapor 
content hourly, with a spatial resolution of 0.125◦. In addition, real-time 
flying aircraft tracking data from FlightRadar24 (https://www.flightrad 
ar24.com/) were selected as a data source for validation. 

Cloud computing provides the possibility for private individuals or 
institutions to perform tasks that require large-scale and high- 
performance computing with low cost and short waiting time. For 
example, the GEE based on the Google cloud computing infrastructure 
provides the planetary-scale computing service for all kinds of users 
(Gorelick et al., 2017; Murray et al., 2019; Tamiminia et al., 2020). 
Although the GEE is a powerful facility for remote sensing applications, 
it is unsuitable for identifying flying aircraft. The GEE hides every aspect 
of how a computation is managed, which means that applications that 
do not match the Earth Engine’s computational model cannot be per
formed effectively (Gorelick et al., 2017). Instead of using the GEE 
directly, we use GCS and GCE from the Google Cloud Platform to 
construct a scalable framework to meet the requirement of handling 
massive OLI data on a global scale. 

The framework for mapping activities of global flying aircraft 
deployed on the Google Cloud Platform is displayed in Fig. 3. Landsat 
data and water vapor content data were obtained from GCS and 
Copernicus Climate Data Store using Google Big Query and the ERA5 
CDS API, respectively. Then, aircraft were detected on the GCS by multi- 
virtual machines handling the large size of volume data and satisfying 
the requirements of tremendous computing resources. In the process, the 

Fig. 3. Workflow of generating global flying aircraft data.  
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aircraft candidates and water vapor data were processed first. Then, 
according to the water vapor content and the region, the processing was 
classified into one of four types: normal scene, dry scene, SAA, and both 
SAA and dry scene. Finally, the aircraft were identified using the method 
presented in the study. Once all the daily data were generated, multi
temporal composites were made to obtain different maps of flight ac
tivities, e.g., a 16-day composition to obtain the global coverage. 

In this study, the SAA method was applied to the SAA region and 
used for the North Pole where the latitude was larger than 65◦. Ac
cording to the region of SAA presented by Liu et al. (2018) and Finlay 
et al. (2020), and the false alarm distribution of detected flying aircraft 
in practice, the paths/rows 0–47/58–104 and 157–233/58–104 of 
Landsat scenes were selected as the SAA region. For the Tibetan region, 
very few aircraft pass through this region due to the high altitude, thus 
we removed this region to reduce the computing burden. For the same 
reason, the Landsat images covering the Antarctic region have also been 
removed. 

3. Validation 

Landsat 8 images over the regions of China, America, Europe, Africa, 
Australia, and South America were selected for validation, and the re
sults are summarized in Table 1. For China, America, Europe, and Africa, 
Landsat 8 images from December 1, 2017 to January 01, 2018 were 
used, and Landsat images from August 1, 2019 to October 31, 2019 were 
adopted for Australia and South America. These images include a variety 
of background surfaces, e.g., snow, desert, urban, forest, grass, moun
tains, and different cloud coverages, under different water vapor con
tents. More specifically, most of the images were obtained when the 
water vapor content was quite low (less than 0.8 g/cm2) for China and 
America. For the European and Australian regions, most images are 
cloud contaminated, while the cloud coverage over the Chinese and 
African regions is quite low. 

In this study, except for the African region, the other validation re
gions are all well covered by the ground aircraft tracker to ensure the 
real-time aircraft tracking data available from FlightRadar24. For 
Landsat 8 OLI images obtained in these regions, if no available real-time 
monitoring data are available from FlightRadar24, these scenes are 
removed from the validation (not applying to the African region). 
Finally, 254 Landsat 8 OLI images were used for validation. 

The actual distribution of flying aircraft for algorithm validation was 
obtained by manual interpretation. The manual interpretation was 
carefully performed based on the parallax effect displayed in the OLI 
images, and the real-time aircraft tracking data were obtained from 
FlightRadar24. Here, the Landsat band 4, 3, 2 were selected to compose 
true-color image, and the displacement of flying aircraft in the images 
due to the parallax effect was used as the reference for manual inter
pretation. The aircraft covered by clouds, with lengths less than the 
resolution of Landsat images, and at low flying altitudes, found in the 
real-time data from FlightRadar24 but not in the OLI band 9 images 
were removed from the manual interpretation results. 

Notes: ‘Image Num.’ is the number of OLI images used for validation. 
‘Study Num.’ presents the aircraft numbers identified by the study, 

‘Manual Num.’ presents the aircraft numbers identified by the manual 
interpretation. ‘Accuracy/False’ means the number of other objects 
falsely recognized as aircraft by the algorithm, and ‘Accuracy/Omission’ 
indicates the number of aircraft that failed to be identified by the al
gorithm; nevertheless, it is confirmed by manual interpretation. ‘Accu
racy/False’ and ‘Accuracy/Omission’ refer to the ratio of false alarms 
and omissions to total numbers of the algorithm, respectively. The 
detailed result of each scene can be found in the supplement materials 
Table 1. 

For the South American region, the ratio of false alarms was 6.03%, 
similar to other regions, such as 5.85% for the Chinese region and 6.77% 
for the American region. The low false alarm ratio indicates that the SAA 
method can successfully eliminate the influences of energetic particles. 
On the other hand, the omission ratio of 23.28% is larger than other 
regions, e.g., 10.98% for the Australian region and 4.59% for the 
American region. The omission ratio of the South American region was 
even significantly larger than that of the European region (12.52%), 
where images were heavily covered by clouds. To clarify how the SAA 
method affects the number of omissions, we also performed detection 
without the SAA method on the images of the South American region. 
The results showed that using the SAA method increased the omission 
number of aircraft from 5 to 27 and led to approximately 18.97% (22/ 
116) omission in the South American region accordingly. Further 
analysis indicated that the rule part (I) presented in section 2.2 led to 
approximately 45% (10/22) omissions, while rule part (II) contributed 
the additional part. 

For Europe and Australia, the omission ratios are obviously larger 
than those in the other regions due to the high coverage of high clouds, 
with values of 12.52% and 10.98%, respectively. High clouds give high 
reflectance in OLI band 9, which makes the edge between the back
ground and aircraft indistinguishable, and the segmentation algorithm 
fails to process these scenes correctly. For dry scenes, such as Chinese 
and American regions, the ratios of omissions and false alarms were all 
lower than those in the other regions. In general, a total of 1807 flying 
aircraft were recognized from 254 Landsat 8 images, and the percent
ages of false alarms and omissions for the validation data were 5.37% 
and 7.80%, respectively. 

Furthermore, we analyzed the difference in detected flying aircraft 
between this study and the real-time data from FlightRadar24. The 
flying aircraft not presented in OLI band 9, caused by low flying altitude 
(less than 3500 m), small size (wingspan less than 30 m), or covered by 
clouds (cannot be observed on band 9 clearly), are summarized for each 
region, as the column ‘Omission of this study’ shown in Table 2. The 
flying aircraft failed to be traced by FlightRadar24, but the aircraft 
detected in this study are also presented in the table. 

In general, a total of 2842 aircraft were detected by FlightRadar24, 
thus 42.99% (1222/2842) were undetected by the study. Among the 
undetected flying aircraft, 40.59% (496/1222) were due to the low 
flying altitude (less than 3500 m), 19.63% (240/1222) were due to the 
small size of the aircraft, and 45.90% (561/1222) were caused by cloud 
contamination. Note that omissions caused by flying altitude or size may 
be counted repeatedly (no more than 75) for aircraft with a small size 
usually flying at a low altitude. The omission caused by a low flying 

Table 1 
Results of accuracy validation for the algorithm.  

Region Path/Row Image 
Num. 

Study 
Num. 

Manual 
Num. 

Accuracy (%) Accuracy (%) 

False Omission False Omission 

America 27–29/33–36 34 458 448 31 21  6.77  4.59 
Europe 196–198/24–27 40 567 619 19 71  3.35  12.52 
China 123–124/34–40 45 564 543 33 12  5.85  2.13 
Australia 92–94/83–85 40 82 86 5 9  6.10  10.98 
Africa 179–181/49–51 44 20 19 2 1  10.00  5.00 
South America 219–220/72–77 51 116 136 7 27  6.03  23.28 
Total  254 1807 1851 97 141  5.37  7.80  
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Table 2 
Comparison of detected aircraft results between this study and FlightRadar24.  

Region Total aircraft Num. Omission of this study Omission of FlightRadar24 

Study FlightRadar24 Altitude Size Cloud Total 

America 458 692 121 40 82 227 17 
Europe 567 1216 266 128 456 811 10 
China 564 554 8 11 8 25 24 
Australia 82 124 34 5 7 44 3 
Africa 20 / / / / / 18 
South America 116 256 67 56 8 115 18 
Total 1807 2842 496 240 560 1222 90 

Notes: ‘Altitude’, ‘Size’ and ‘Cloud’ stand for the situation caused by low flying altitude, small size, and covered by clouds, respectively. ‘/’ means data is not available. 

Fig. 4. The number of flying aircraft detected for Global North America, Africa, Asia, Europe, South America, Oceania, and other regions. Notes: NA = North 
America, SA = North America, EU = Europe, OA = Oceania, AF = Africa, AS = Asia. Ocean refers to the regions other than these above continents. 
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altitude was generally found near the airport during take-off and land
ing. The validation images for Europe, America and South America 
contain more airports than other regions; as a result, the omission due to 
a low flying altitude was larger than that in the other regions. For 
example, the omission and total number of detected aircraft in Europe 
were 266 and 567, but were 8 and 564 in China regions respectively. The 
omission caused by clouds can be found anytime, not only during take- 
off and landing but also during cruising, once the altitude of the cloud 
and optical thickness are enough to mask the signal of flying aircraft. 

Compared with the results presented in this study, a total of 90 flying 
aircraft were undetected by FlightRadar24. This omission of Fligh
tRadar24 is due to two main reasons. One is attributed to the coverage 
gaps of ADS-B receivers, e.g., as in the African region shown in Table 2. 
Another reason is that some aircraft are not equipped with ADS-B 
transponders. Overall, this study provides a supplement for moni
toring the activities of aviation, especially for regions without enough or 
stable coverage of ADS-B devices. 

4. Results and application 

After processing 1.94 million Landsat OLI images on the Google 
Cloud Platform, we obtained the spatial–temporal map of global flying 
aircraft from April 1, 2013 to December 31, 2020, and 1.87 million 
aircraft were identified in total. The numbers of global flying aircraft 
identified from Landsat 8 OLI images monthly during the last few years 
are presented in Fig. 4. From 2013 to 2019, the number of global flying 
aircraft shows a significantly increasing trend, both in summer and 
winter. In general, flying aircraft rose by 25.85% from 2014 to 2019 
with an annual growth rate of 4.31%, close to that of the air traffic data 
predicted by Airbus (2014), with 4.4% annual growth from 2013 to 
2033. One thing to note here, the year 2013 is excluded from the 
calculation, for the low coverage of Landsat data in 2013 on global scale. 
In 2020, the total flying aircraft decreased by 40% compared with 2019 
due to the influence of COVID-19. For reference, the decline of RPK in 
2020 released by the International Civil Aviation Organization (ICAO) 

Fig. 5. Flying aircraft detected in (a) January 2019 and (b) July 2019 from Landsat OLI images. Notes: The gray line is the coverage of Landsat images, and the gray 
area represents the land. 
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(ICAO, 2020) is 53% of that in 2019. Among continents, Asia is the 
fastest growing continent in aviation, while Oceania, Africa, and South 
America present slower growth. 

In the Northern Hemisphere, the total flying aircraft number in 
summer is 68.37% greater than that in winter for two reasons. The first 
is the coverage of the Landsat image. The less coverage there is, the 
fewer detected flying aircraft there are. The total numbers of Landsat 8 
OLI images monthly from April 1, 2013 to December 31, 2020 are 
presented in Fig. 4, showing that the number of Landsat images is 30% 
lower in winter than in summer. In addition, another important reason is 
that the travel demand is higher in summer than in winter; as a result, 
aviation activities are much more frequent in summer than in winter. 
Therefore, fewer flying aircraft are detected in winter. 

The spatial distribution of flying aircraft is presented in Fig. 5. The 
flying aircraft detected by Landsat 8 data in January and July 2019 were 
selected to display the activities of aircraft globally. As shown in Fig. 5, 
aircraft are mainly distributed over the Northern Hemisphere and 

cluster together in North America, Europe and East Asia, roughly 
totaling 70.82% of all aircraft worldwide. The density of aircraft is 
closely related to regional economic development. The better the 
economy is, the greater the number of aircraft. Additionally, almost no 
aircraft are found at high latitudes (latitude > 65◦) due to unavailable 
coverage of Landsat images in winter (Fig. 5(a)). 

The COVID-19 pandemic outbreak has had an unmatched negative 
impact on the travel tourism industry worldwide, thus global aviation is 
hit accordingly. Here, our results present a view of how global aviation is 
influenced by COVID-19. The activity maps of flying aircraft within 
April 7 to 22, 2019 and April 6 to 21, 2020 are shown in Fig. 6(a) and 
(b), respectively. Compared with the period of April 7 to 22, 2019, the 
number of aircraft during April 6, 2020 to April 21, 2020 was reduced by 
55.54%. Europe and America suffered the heaviest decrease in aviation 
activities, with declines of 84.59% and 58.55%, respectively, while Asia 
presented a smaller decrease in flying activities. The results conducted in 
this study illustrate the inhibitory effects of COVID-19 on global aviation 

Fig. 6. Flying aircraft detected within (a) April 7 to 22, 2019 and (b) April 6 to 21, 2020 from Landsat OLI images. Notes: The gray line is the coverage of Landsat 
images, and the gray area represents the land. 
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well, which reflects that the detection algorithm of flying aircraft is 
authentic and valid. 

Reduction rate of Aircraft number in 2020 compared to 2019 is 
presented in Fig. 7 to illustrate the impact of COVID-19 with time. In 
general, the number of global flying aircraft in 2020 is clearly lower than 
that in 2019. The number of global flying aircraft began to decline 
approximately March 2020 and dropped by 70% until April 2020, and 
then a slow recovery was observed. Among different continents, Europe 
is the most severely affected by COVID-19, with an 84.59% decline of 
flying aircraft in April 2020. Aviation in Asia was the first to respond to 
COVID-19, and the number of flights showed a significant decline in 
early February 2020. In terms of recovery, flights across the oceans, as 
shown in the other regions of Fig. 7, did not fully resume due to re
strictions on international travel. Essentially, the changes in aviation 
activities in this study are consistent with the development trends of 
COVID-19, which suggests that the detection algorithm for flying 
aircraft can accurately capture the status of the aviation industry. 

5. Discussion 

The ground ADS-B device and the method presented in this study 
provide two different ways to map the flight activities. The ground ADS- 
B device demonstrates unique high accuracy to track the activities of 
aircraft. However, the main problems of this method are the coverage 
gap and stability of the ADS-B device, which are difficult to mitigate in 
remote locations. Until now, the coverage of ADS-B devices has been 
quite poor in North Africa, Northern Canada, Western China, Southern 
Venezuela, Northern Russian, and especially Siberia. The historical 
archive of flight activities is highly crucial for climate change research, 
but such information is not available from the newly deployed ADS-B 
devices. Before 2017, the coverage of ADS-B devices was mainly over 
in Europe, America and some large cities in other countries. This means 
that no flying aircraft information can be provided for most locales, but 
this study provides relatively long historical archive of flight activities, 
e.g., beginning 2013. However, this study also has some limitations and 
uncertainties. 

The first limitation of the study is temporal coverage. The Landsat 8 
satellite revisits the Earth with a cycle of 16 days, as a result, this study 
can only provide full cover every 16 days. In addition, the Landsat sat
ellite sensor only records an instantaneous state of the object, while the 
ground ADS-B device can provide continuous observations of the aircraft 
during flight. More specifically, the Landsat 8 satellite overpasses and 
acquires images at approximately 10:30 AM local time, thus no flight 
information can be obtained at other times. The 10:30 AM local time is 
one of the busiest flight times during the day, which means that the map 
of flying aircraft presented in this study is likely the densest throughout 

the day. However, the launch of Landsat 9 at the end of 2021 could 
enhance the observation frequency (Masek et al., 2020). 

The omission of flying aircraft with low flying altitudes or small sizes 
is the second limitation of our algorithm, which is mainly caused by the 
spatial resolution of Landsat data and vapor absorption at 1.38 μm. As 
shown in Table 2, approximately 37.30% (674/1807) of aircraft are 
omitted by the study compared to the real-time data from FlightRadar24 
due to small size or low flying altitude. In addition, some uncertainties 
come from the vapor content data. We used water vapor data with a 
resolution of 0.125◦ in the study, which is currently the highest spatial 
resolution water vapor data available with high temporal resolution. 
Lower-resolution water vapor data increase the uncertainty of scene 
type determination. For example, if a day scene is falsely classified into a 
normal scene, Eq. (2) will not be used to eliminate potential false alarms. 
The method to eliminate potential false alarms in the SAA region also 
introduces the uncertainty of the detected results in the SAA region. As 
we discussed in section 3, the application of the SAA method increases 
the additional ratio of omission by 18.97%. 

Another uncertainty is cloud coverage, which may occur anywhere 
and anytime and changes with the seasons. On the one hand, when the 
altitude of the cloud is high or the flight altitude of aircraft is low, and 
the optical thickness of the cloud is enough to mask the signal of the 
flying aircraft, all the aircraft will be omitted by the detected algorithm. 
On the other hand, although the optical thickness of the cloud is not 
enough to mask the signal of the flying aircraft, the cloud may weaken 
the difference between the cloud and aircraft, which invalidates the 
segmentation algorithm. As a result, the omission in cloud-affected 
scenes increases. However, the 1.38 μm band is less sensitive to low 
clouds or middle clouds, which means that this band is less influenced by 
clouds than the parallax method. 

In this study, we used the Google Cloud (other cloud services are also 
appropriate, e.g., Amazon Web Services), GCS and GCE in place of the 
GEE to construct another solution with enough scalability. The service of 
GCS and GCE provides autoscaling capabilities for the user, therefore, 
the two core operations, Landsat data download from GCS and flying 
aircraft identification by GCE virtual machine, are also scalable. This 
means that the total processing time almost linearly decreases with the 
number of virtual machines. We used 10 virtual machines from GCE, and 
then all the Landsat 8 data were processed within 2 weeks, which in
dicates that the structures based on GCS and GCE are sufficiently scal
able and flexible. This means that applications that do not match the 
GEE computational model, e.g., some machine learning models and 
operations that involve long-running iterative processes, can run effi
ciently under the GCS and GCE frameworks. 

Fig. 7. Reduction rate of flying aircraft number in 2020 compared to 2019 detected by Landsat 8 OLI images every 16 days.  
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6. Conclusions 

In this study, based on Landsat 8 OLI data and cloud computing, the 
first global activities maps of flying aircraft from April 1, 2013 to 
December 31, 2020 were presented. The described method reduces the 
influence of energetic particles in the South Atlantic Ocean. This was 
validated by an effective decrease in false positives for the South Atlantic 
Ocean. The validation over the 254 scenes for 6 regions suggested that 
the algorithm performs well, with false alarm and omission ratios of 
5.37% and 7.80%, respectively. Furthermore, the computing framework 
constructed in this study to handle the large data volume relied on GCS 
and GCE, which proved to be both flexible and scalable. This framework 
is very useful for applications that require processing extremely large 
datasets but cannot share the benefits of distributed processing from the 
GEE. 

The result of flying aircraft showed that flying aircraft from 2014 to 
2019 increased by 25.85% with an annual rise of 4.31% on a global 
scale, while the total flying aircraft decreased by 40% in 2020 compared 
with 2019 due to the influence of COVID-19. We hope the result of this 
study will serve as the direct observation supplement for understanding 
and evaluating aviation’s impacts on the climate system and aviation 
industry rebound after the influence of COVID-19. 
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