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5 ABSTRACT: We have developed a new series of environmentally
6 extended multiregion input−output (MRIO) tables with applications in
7 carbon, water, and ecological footprinting, and Life-Cycle Assessment, as
8 well as trend and key driver analyses. Such applications have recently been
9 at the forefront of global policy debates, such as about assigning
10 responsibility for emissions embodied in internationally traded products.
11 The new time series was constructed using advanced parallelized
12 supercomputing resources, and significantly advances the previous state
13 of art because of four innovations. First, it is available as a continuous 20-
14 year time series of MRIO tables. Second, it distinguishes 187 individual
15 countries comprising more than 15,000 industry sectors, and hence offers
16 unsurpassed detail. Third, it provides information just 1−3 years delayed
17 therefore significantly improving timeliness. Fourth, it presents MRIO
18 elements with accompanying standard deviations in order to allow users to understand the reliability of data. These advances will
19 lead to material improvements in the capability of applications that rely on input−output tables. The timeliness of information
20 means that analyses are more relevant to current policy questions. The continuity of the time series enables the robust
21 identification of key trends and drivers of global environmental change. The high country and sector detail drastically improves
22 the resolution of Life-Cycle Assessments. Finally, the availability of information on uncertainty allows policy-makers to
23 quantitatively judge the level of confidence that can be placed in the results of analyses.

1. INTRODUCTION
24 In 2009, China’s chief climate negotiator Li Gao argued that
25 carbon emissions due to the production of export goods should
26 be the responsibility of the consuming country.1 Multiregion
27 input−output (MRIO) tables are acknowledged to be an
28 appropriate tool to underpin this consumer-responsibility
29 accounting.2−4 MRIO tables document thousands of relation-
30 ships between industry sectors (so-called “production recipes”)
31 and are thus able to trace carbon emissions through complex
32 international trade and supply chains networks. We present a
33 new MRIO database called Eora that substantially advances the
34 state of the art and contains the world’s largest and most
35 detailed map of the global economy.
36 Wiedmann et al.5 provide a comprehensive account of the
37 policy relevance of MRIO applications in a world where
38 consumption and production are increasingly spatially sepa-
39 rated. MRIO tables are used to establish the carbon footprints
40 of nations,6 a concept that complements the conventional
41 territorial allocation of emissions as reported to the UNFCCC
42 with a consumer-responsibility perspective of global CO2

43 emissions.7,8 Carbon footprint results obtained from such
44 MRIO tables have demonstrated the marked growth of
45 emissions facilitated by international trade.9−11 MRIO tables
46 also have applications in advanced techniques for Life-Cycle
47 Assessment (LCA), where product- and process-specific data
48 are combined with overarching input−output data.12
49 The widespread adoption of MRIO models has so far been
50 hampered by a number of factors. First, constructing an MRIO

51database has been labor-intensive. Second, currently available
52MRIO tables either do not cover the entire world, group a large
53number of individual countries into regions, and/or aggregate
54detailed industries into broad sectors. Third, MRIO tables are
55often not available as a long, continuous time series, and at the
56time of their release, the most recent tables are already many
57years outdated. Finally, MRIO databases currently provide only
58results without accompanying estimates of reliability and
59uncertainty. Of course, existing MRIO databases are designed
60with different purposes in mind, however limited resolution and
61untimeliness are impediments for any MRIO application, no
62matter its purpose.5 All these shortcomings are mainly due to
63problems in handling of incomplete, conflicting, and mis-
64aligned data, but also due to previous limitations in computa-
65tional capacity.
66The research needs listed above are now addressed by the
67new Eora MRIO database. Measured in terms of detail,
68coverage, size, continuity, timeliness, and comprehensiveness,
69 t1Eora has considerably extended current limits (Table 1).

2. METHODS
702.1. Input−Output Analysis. Leontief’s input−output
71analysis (IOA) framework is at the heart of many models
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72 informing national economic policy. Input−output tables that
73 map the production recipes and trade structures in national
74 economies are published regularly by more than 100 national
75 statistical agencies around the world, as well as supranational
76 institutions such as the OECD or Eurostat. Leontief envisaged
77 input−output analysis to be applied to environmental issues,13

78 and since then his design of an environmentally extended
79 input−output table has been employed in thousands of
80 empirical and theoretical studies 14 (Supporting Information
81 (SI), Text S1).
82 In the 1970s and 1980s, Leontief already had a vision of an
83 information system for the world economy.15,16 However, only
84 during the past two decades, possibly driven by the increasingly
85 complex interdependence of national economies through
86 international trade, and contemporary global problems such
87 as climate change and resource depletion, has research veered
88 more toward multiregional input−output (MRIO) databases.3

89 In contrast to national IO tables, global MRIO databases are
90 not compiled by statistical agencies, but by a handful of
91 research groups around the world.
92 2.2. Construction of the MRIO Tables and Satellite
93 Accounts. There exist serial and parallel approaches to
94 estimating a time series of input−output tables.17 A serial,
95 iterative approach was chosen for constructing the Eora tables
96 because it has advantages over parallel approaches in situations
97 where the data required for setting up annual initial estimates
98 are unaligned or incomplete.18 We first generate an initial
99 estimate in accordance with United Nations guidelines19 from a
100 selected set of raw data for the base year 2000 (SI, Text S3),
101 because data availability is best for this year (SI, Table S3). In
102 the case of countries for which an input−output table is

103unavailable we construct a proxy input−output table combining
104other macro-economic data for these countries with a template
105input−output structure based on an average of the Australia,
106Japan, and United States tables (SI, Table S3.1). We then
107determine a year-2000 MRIO table by reconciling all raw data
108available for 2000. This year-2000 MRIO table is taken as the
109initial estimate for the subsequent year 2001. A 2001 MRIO
110table is then calculated on the basis of all raw data available for
1112001, and the entire time series is completed in the same
112stepwise manner.
113The solution of the reconciliation process for each year is
114hence obtained from two ingredients: an initial estimate, and a
115set of raw data. The entire MRIO table construction procedure
116can be summarized in five steps:

1171 All raw data (assume M points) available for the year in
118question are collated into a vector c (all data sources are
119listed in SI, Text S6). Since the Eora tables distinguish 5
120valuations, including basic prices, margins, taxes, and
121subsidies, no transformation of raw data expressed in
122purchasers’ prices into basic prices is necessary.
1232 An M × N matrix G is set up that contains constraints
124coefficients describing the relationship Ga = c between
125M raw data points in c, and N MRIO table elements
126(vectorized as a N × 1 vector a). In addition, N × 1
127vectors l and u are constructed that contain lower and
128upper bounds on all MRIO elements in a. These lower
129and upper bounds result from definitions of accounting
130variables. For example, the bounds for changes in
131inventories are [−∞,+∞], those for subsidies are
132[−∞,0], and those for remaining MRIO elements are
133[0,+∞].
1343 Constraints based on raw data stemming from different
135sources often conflict, so that Ga = c can usually not be
136fulfilled exactly. We therefore follow van der Ploeg20 by
137extending the vector a with slack variables ε = Ga − c,
138effectively allowing the MRIO realizations Ga to deviate
139from their prescribed values c. a and ε are collated into
140one vector p = [a|ε]’.
1414 A constrained optimization algorithm is invoked for
142finding a reconciled solution for p that best fulfills the
143constraints Gp = c and l ≤ p ≤ u, while minimizing the
144departure of p from its initial estimate p0 = [a0|0]’. The
145optimization step is necessary because the number of
146MRIO elements by far exceeds the number of constraints
147and there is not enough information to analytically solve
148the system for p. The objectives “best fulfills” and
149“minimizes departure” can be specified mathematically.
150For example, in the approach by van der Ploeg,20 “best”
151means minimizing the slack variables ε.
1525 The time series is constructed iteratively, by starting with
153the 2000 initial estimate, reconciling this with all 2000
154constraints, and taking the solution as the initial estimate
155for 2001, and so on. Back-casting to 1990 proceeds
156similarly. A balanced table for one year will be an
157inappropriate initial estimate for the next year under
158strong economic growth. Therefore, we have constructed
159initial estimates by scaling all prior solutions with
160interyear ratios specific to transactions (use, trade),
161final demand, value added, and supply tables. These
162ratios were derived from country time series data on
163GDP, exports, imports, and value added.21

164A simple example is provided in the SI, Text S5.

Table 1. Performance Comparison of the Eora MRIO
Database with the Previous State of the Art

previous
state of the art5 Eora

country coverage 43−57 individual
countries plus 129
regions

187 individual countries

sector coverage 3760−7353 sectorsa,b 15909 sectorsa,c

environmental
indicator coverage

30 emission types, 80
resource types

35 indicator categories >1700
single indicatorsd

continuity 1995−2007e annual tables 1990−2009
timeliness publication delayed by

at least 5 years
1−2 years prior to current
year

reliability and
uncertainty
information

none standard deviations for every
MRIO element

aA “sector” can be an industry or a product. The values listed include
the number of both industries and products, since some countries
feature asymmetrical Supply−Use Tables (SUTs) in which these
numbers are different. bGTAP 8: 57 sectors and 129 regions for 2004
and 2007, in total 7353 transactions; EXIOPOL: EU27 and 16 non-
EU countries, and about 129 sectors for 2000, in total 5547 sectors;
WIOD: 27 EU countries and 13 other major countries in the world,
more than 35 industries and at least 59 products for 12 years, in total
3760 sectors. c187 single countries at 25−500 sectors totalling 15909
sectors, 5 valuation sheets, 20 years, makes in total more than 20
billion transactions. dEnergy, CO2, CH4, N2O, HFC-125, HFC-134a,
HFC-143a, HFC-152a, HFC-227ea, HFC-23, HFC-236fa, HFC-245fa,
HFC-32, HFC-365mfc, HFC-43-10-mee, C2F6, C3F8, C4F10, C5F12,
C6F14, C7F16, CF4, c-C4F8, SF6, HANPP, CO, NOx, NMVOC, NH3,
SO2, HC, HCFC-141b HCFC-142b, Ecological Footprint, and Water
Footprint. eGTAP: 1992, 1995, 1997, 2001, 2004, 2007; EXIOPOL:
2000; WIOD: 1995−2006.
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165 While there exists a plethora of optimization approaches, the
166 literature on input−output table estimation favors variants of
167 the RAS iterative scaling method,22 and Quadratic Program-
168 ming algorithms.20 These methods differ by the quantitative
169 specification for penalties that are imposed for any departure

f1 170 from the constraints Gp = c and l ≤ p ≤ u (Figure 1).
171 Balancing and time series iteration are discussed further in the
172 SI, Text S2.

173 A key feature of the optimizers used for constructing Eora
174 MRIO tables is their ability to deal with conflicting constraints.
175 A prime example for such data conflict are exports and imports
176 data contained in the United Nations’ Comtrade database.23

177 One would expect that bilateral trade volumes, reported by the
178 exporting country exclusive of international trade margins and
179 import duties, are slightly smaller but comparable in magnitude
180 to the corresponding volumes reported by the importing
181 country.24 However, a surprisingly large proportion of the data

f2 182 violate this basic requirement (Figure 2).
183 This circumstance imposes restrictions on the choice of
184 optimizer, in the sense that conflicting equations in the linear
185 system Gp = c render the balancing and reconciling of the Eora
186 MRIO tables an infeasible problem for the most widely used
187 RAS method. The problem of conflicting raw data can only be
188 solved through the introduction of quantitative information on
189 data reliability and uncertainty, slack variables ε, and through
190 combining this information with advanced optimization
191 methods such as Quadratic Programming and KRAS.25 Variants
192 of these methods have been implemented in the Eora optimizer
193 suite.
194 Note that the constraints coefficients matrix G is sparse, but
195 very large. Since for an average time series year, we were able to
196 locate about 70 million raw data points, and our MRIO has
197 more than one billion elements for each year, G has about 70
198 million rows, and more than 1 billion columns. The timely
199 construction of G was achieved by automating data mining,
200 processing, and reclassification procedures as much as
201 possible26,27 (see SI, Text S4). The design and implementation
202 of constrained optimizers on such a large scale is an
203 achievement in itself, since variable spaces sized in excess of
204 1 billion are beyond the capability of commercially available
205 software (see Section 3.1). We constructed, balanced, and
206 reconciled Eora’s large MRIOs on a purpose-built scientific
207 computing cluster. Tables currently deployed online have been

208generated using a parallelized version of KRAS.25 We provide
209further details on the implementation of steps 1−5 in Section
2103.1.
2112.3. Construction of the Standard Deviations Table.

212The standard deviations σpj accompanying MRIO elements pj
213are estimated in two steps. First, assuming normally distributed

214observations, standard deviations σci of raw data points ci are
215partly estimated based on published data or expert interviews,
216but mostly set according to certain world views on the
217uncertainty of various sets of raw data. For example, our
218interviews revealed that input−output data issued by national
219statistical offices are widely viewed as accurate representations
220of “true” input−output transactions, whereas for example
221United Nations statistical officers acknowledged limitations in
222their ability to interrogate and correct data supplied to them
223from various sources. Hence, the version of Eora available at the
224time of writing was constructed with national data being set
225“tight” (i.e., small standard deviations), and UN data “loose”
226(large standard deviations). Different specifications based on
227different world views are possible, and if rerun, would result in a
228different version of Eora. There is hence no unique, “true” set
229of MRIO tables.28 Nevertheless, it can generally be found that
230smaller raw data values are associated with higher relative
231standard deviations, and vice versa.
232Second, a modified RAS optimization algorithm is employed

233in order to fit standard deviations σpj to an error propagation

234formula σci = (∑j(Gij σpj)
2)1/2 This procedure is consistent with

235the estimation of the MRIO elements p, based on raw data c. In
236fact, the error propagation formula can be derived from the
237optimization condition Gp = c. The σp are influenced by two
238factors. The first is an uncertainty characteristic: the smaller the
239uncertainty σc of a raw data item c, the smaller the uncertainty

Figure 1. Schematic representation of a compromise solution between
two conflicting data points. Points D1 and D2 represent two conflicting
reported values of the same data point. D1 has high confidence (a small
standard deviation) and D2 has low confidence (large standard
deviation). The solution point S lies closer to D1. This schematic
shows a quadratic penalty function. Using linear, entropy, or another
objective function will result in the solution S representing a different
compromise between the two constraints.

Figure 2. Data conflict in the United Nations Comtrade database.23

The scatter plot contains 1872 bilateral national trade volumes. The
horizontal line crossing the vertical axis at 1 means country A’s
reported exports to country B equal country B’s reported imports from
A. Reported imports should be slightly larger, so that in theory there
should be no values above the said horizontal line. This principle is
clearly violated, though integrity does improve slightly with larger
trade values. Resolving fundamental disagreement in the original data
such as this is a major challenge Eora attempts to solve.
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240 σp of MRIO elements addressed by this raw data item. The
241 second is a data conflict characteristic: the premodified-RAS

242 initial estimate σpo of the σp is set to the difference between the
243 MRIO initial estimate p0 and the MRIO final solution p. This
244 difference is influenced by the conflict in the raw data, because
245 conflicting raw data lead to movements in elements during
246 optimizer runs. For further details see ref 29.

3. THE EORA GLOBAL MRIO INFORMATION SYSTEM
247 3.1. Structure and Innovations. The Eora MRIO
248 database is deployed online (www.worldmrio.com). Its main
249 feature is a continuous series of environmentally extended
250 global MRIO tables. Each MRIO table is a representation of the
251 structure of the global economy; it contains a complete account
252 of monetary transactions between the industry sectors of 187
253 countries (SI, Table S2). Because each country has a different
254 economic structure, most of Eora’s countries are represented by
255 different table formats (SI, Text S1), and at a different level of
256 sector detail, ranging from 26 to 500 sectors per country (SI,
257 Table S2).
258 The strategy of heterogeneous sector classification and table
259 type was chosen so that the Eora MRIO could incorporate
260 maximum sector detail overall. For example, the economies of
261 Brazil, China, and Singapore are heavily based on agriculture,
262 manufacturing, and trade/services, respectively. To represent
263 these economies in a homogeneous sector classification as in
264 existing MRIOs requires substantial aggregation and reclassifi-
265 cation steps,24 and causes loss of information and transparency.
266 In addition, Eora’s heterogeneous sector classification ensures
267 flexibility, because a homogeneous MRIO time series where all
268 countries’ transactions are expressed in the same sector
269 classification can always be calculated from the original
270 heterogeneous MRIO tables. Complementing the full table, a
271 26-sector homogeneously classified version is available for
272 download from the Eora Web site.
273 Each monetary MRIO table identifies 15909 sectors, both
274 supplying and receiving, and hence in excess of 250 million
275 transactions. Basic prices of transactions are valued separately
276 to trade margins, transport margins, taxes, and subsidies, in five
277 valuation sheets, expressed in units of current U.S. dollars; (see

f3 278 Figure 3 for a heat map of the 2009 basic price table). The

279tables exist in a constant format and sector/indicator
280classification for a 20-year period 1990−2009. The total
281number of transactions data exceeds 1 billion per year, or 20
282billion in total, and including the constraint matrices, satellite
283accounts, and ancillary result files and reports, that complete
284result time series occupies more than 3 Terabytes.
285Environmentally extended MRIOs append so-called satellite
286accounts in physical units, which complement the monetary
287table with nonmonetary inputs to production. Thus the
288production recipes contained in an environmentally extended
289MRIO include the conventional economic inputs (steel,
290machinery, labor, capital) as well as resources (land, energy,
291water) and environmental impacts (emissions, biodiversity
292loss). The strength of this setup is that both the monetary
293MRIO and the satellite accounts adhere to the same sector
294classification. This data integration enables the straightforward
295translation of economic activity in one country into biophysical
296impacts in another. Hence, environmentally extended MRIOs
297provide a powerful tool and data set to a wide range of
298footprinting and LCA applications.
299Eora’s satellite accounts provide details on 35 broad indicator
300groups. At the finest level of detail (fuel types, gas types,
301individual threatened species), these indicator groups break
302down into 20,832 indicator line items.
303To assemble and balance MRIO tables at such a large scale, a
304host of obstacles had to be overcome by developing a number
305of innovative features: (1) a streamlined, automated workflow
306management including a custom-built programming language,
307(2) a novel constrained optimization algorithm that can solve
308large-scale quadratic programming problems, and (3) a tailored
309hardware configuration for parallelized handling of the Eora
310build-pipeline (see SI, Text S2.4).
3113.2. Uncertainty Information. A unique and innovative
312feature of the Eora MRIO tables is that every MRIO and
313satellite account element is accompanied by corresponding
314standard deviations. Transparent information on uncertainty is
315important in any application of input−output analysis, because
316it helps decision-makers in understanding assumptions and
317limitations underlying the data, and thus enables them to
318engage in informed and transparent decision-making.

Figure 3. Heat map of the Eora MRIO 2009 basic price table, with call-out of the Japan domestic IO table. Each pixel encodes the total value of
transactions from one sector to another. As seen in the colormap legend at right, darker red pixels represent larger values. The Eora MRIO time
series (1990−2009) represents 187 countries with total of more than 15,000 sectors and has five valuation layers.
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319 One example for applications of IO tables is increasingly
320 widespread hybrid approaches to life-cycle assessment (LCA)
321 that combine detailed bottom-up process information with
322 comprehensive top-down input−output information.12 LCA is
323 often used in comparative assessments, for example of
324 technology options. To decide whether one option is preferable
325 over others, it is not sufficient to simply consider final LCA
326 results. Depending on the standard deviations associated with
327 these results, decisions may well be different after uncertainty
328 information is taken into account.
329 Similarly, comparative carbon footprint studies that utilize
330 carbon multipliers derived from global MRIO models should
331 always be accompanied by transparent and comprehensible
332 uncertainty estimates. Only then can decisions be supported by
333 measures of statistical significance, for example using hypothesis
334 testing.
335 In Eora, MRIO standard deviations are calculated by fitting
336 an error propagation formula to standard deviations of the raw
337 data points. This method is described in detail elsewhere.29

338 Standard deviations of multipliers can be derived from MRIO
339 standard deviations using Monte Carlo techniques.30 Standard
340 deviations are essential for determining the uncertainty of any
341 quantitative measure derived from MRIO tables. Moreover,
342 error propagation theory yields that relative standard deviations
343 decrease with aggregation, so that Eora’s quantitative estimates
344 of standard deviations of MRIO elements enable analysts to
345 aggregate the Eora tables according to their own uncertainty
346 requirements.
347 The Eora Web site offers tabular and graphic information on
348 the reliability of MRIO blocks, separately for every country and
349 year. Tabular information includes two ranked lists of raw data
350 points that are best/least represented by the MRIO table. An
351 example for a visualization of MRIO table reliability is what we

f4 352 call a rocket plot (Figure 4).

353 In agreement with previous studies, and in turn with our
354 uncertainty specifications of raw data items, we find that large
355 transactions are better represented than small ones. This is
356 because the optimization of any large MRIO table is an
357 underdetermined optimization problem: The number of raw
358 data items that can serve as support points for the MRIO table
359 is much smaller than the number of MRIO table elements.

360Those elements that are supported by only a few raw data
361points, and hence restricted by only a few constraints, can be
362subject to large adjustments during an optimization run, and
363hence their reliability is low. On the other hand, for virtually all
364large and important MRIO table elements, there exist
365supporting raw data, so that the adjustment of these elements
366is minimal, and hence their reliability is high (Figure 4).
367Even though many MRIO elements are supported by only
368few raw data points, one can show using Monte Carlo
369techniques that it is always beneficial for MRIO table
370construction to exploit as much information as possible.31

371This principle also refers to the inclusion in the Eora MRIO
372table of countries for which input−output tables must be
373estimated as no official tables are available. For all Eora
374countries there exists at least some sectoral breakdown of final
375demand32 and value added,33 plus detailed data on international
376commodity trade,23 which can be used to infer their input−
377output structure. Such estimates, however coarse, provide more
378information than the regional country aggregates in existing
379global MRIO databases.
380Despite their abundance, small and unreliable MRIO
381elements are unlikely to significantly distort input−output
382multipliers,34,35 and therefore do not compromise the quality of
383footprints, LCA results, and other policy-relevant measures.
3843.3. Validation. We validated our results by comparison
385with footprint studies by Peters et al.,9 GFN,36 and the Water
386 f5Footprint Network.37 As seen in Figure 5 the Eora-based
387results are in line with the national carbon footprint (CF),
388water footprint (WF), and Ecological Footprint (EF) results
389calculated in these other studies.

4. POTENTIAL APPLICATIONS
390In addition to MRIO table elements and their standard
391deviation the Eora database supports a range of analytical
392concepts. The most overarching of these are national accounts
393balances. Such balances are known from economic statistics
394where they reflect, in monetary units, that for each nation,
395production plus imports must equal consumption plus exports.
396Being an environmentally extended MRIO framework, Eora
397also shows national account balances in terms of the
398environmental indicators quantified in the satellite accounts,
399in physical units of tonnes of emissions, liters of water, etc. The
400production column of each balance table contains the territorial
401use of resources or emission of pollutants. The exports and
402imports columns can be interpreted as resources and pollutants
403embodied in international trade. The consumption column
404reflects the country’s footprint in terms of the respective
405indicator. Footprints are calculated from environmental multi-
406pliers in the standard manner using the Leontief inverse.
407In policy contexts the production account is also interpreted
408as the producer-responsibility perspective while the footprint
409account represents the consumer-responsibility perspective.38,39

410While most national and global data compendia portray
411environmental variables as characteristics by territory, recent
412thinking emphasizes the view that resource use and emissions
413are ultimately driven by consumers who, through their demand,
414require production, and as a consequence, drive environmental
415pressure. For example, Eora data confirm earlier findings of a
416carbon footprint study of the UK10 showing that the UK was
417outsourcing its emissions-intensive production by importing
418from overseas, and thatcounter to UK government claims
419the UK’s actual carbon footprint had been increasing. This
420finding prompted the British Minister for the Environment to

Figure 4. Rocket plot of constraints and their adherence in the MRIO
solution, shown here for the United States. Large constraint values
(increasing along the logarithmic horizontal axis) are more reliable and
thus the MRIO elements addressed by these constraints are better
preserved in the final MRIO (logarithmic vertical axis). Small
constraint values are less reliable and thus less adhered to in the
final realized MRIO.
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421 address the public on BBC Radio,40 and led to a public inquiry
422 by the UK Government Select Committee on Climate
423 Change.41,42 A flow map visualization showing embodied

f6 424 CO2 imports into the UK is shown in Figure 6.
425 The Eora database contains annual national accounts
426 balances for the entire period 1990−2009, for every country,
427 in monetary terms as well as for every satellite indicator. Such
428 balances reveal which countries are net exporters or net
429 importers of environmental pressure.
430 While there exist several carbon, water, and ecological
431 footprint studies based on global MRIOs, these have not yet
432 been widely utilized in LCA studies. Nevertheless, the potential
433 for future MRIO-assisted LCA applications is large, especially
434 when MRIO databases feature sufficiently high country and
435 sector detail to be able to integrate with detailed bottom-up,
436 process-specific data. The global coverage of MRIOs is
437 particularly important given that manufacturing processes
438 increasingly draw on raw and semifabricated intermediate
439 inputs sourced from global locations with comparative cost
440 advantages. It is not uncommon for consumer products to be
441 underpinned by global supply chain networks involving dozens
442 of countries.5

443 Individual supply chains can be isolated from the MRIO
444 using a technique called Structural Path Analysis (SPA).43 SPA
445 uses tree-scanning algorithms to trace and extract the most
446 important paths from the network, and to rank paths according
447 to their financial magnitude or according to their content of
448 CO2, embodied air pollution, or any other satellite indicator.
449 The Eora database provides ranked SPAs for all satellite

450indicators. SPA can be used to investigate supply chains
451originating, or ending, in a certain country and/or sector
452(Figure 5), or to identify supply chains passing through a sector
453of interest. SPAs provide a versatile microscopic sectoral and
454geographic view of the aggregates in the macroscopic national
455account, footprint, and LCA measures.
456A widely used technique for identifying drivers of change is
457Structural Decomposition Analysis (SDA).44 SDA has been used
458for unravelling the roles of technological change, production
459structures, demand structures, affluence (per-capita consump-
460tion), and population growth, in driving up CO2 emissions.
461Understanding of such key drivers is essential for designing
462policies for mitigating climate change, because such policies are
463potentially most effective when aimed at the most important
464structural determinants of emissions. This time series must
465feature tables in a constant sector classification, and should
466ideally include a long, continuous sequence of annual tables.
467The lack of MRIO tables meeting this requirement has so far
468prevented a comprehensive assessment of global environmental
469trends.
470A key requirement for SDA is the availability of a time series
471of IO tables expressed in constant prices. The literature on the
472topic of converting national currency to constant-price U.S.
473dollars appears to recommend the approaches of “convert-first
474then deflate” and double deflation, i.e. the residual adjustment
475of value added to achieve the table balance. The literature also
476recommends the usage of Purchasing Power Parity (PPP)
477exchange rates45,46. The conversion and deflation of the
478transaction tables of Eora’s 187 countries can be achieved by

Figure 5. Comparison of final national Ecological Footprint (EF) of consumption in 2007, water footprint (WF) in 2000, and CO2 footprint (CF) in
2008 as calculated by Eora and other authors. The Eora-based results are in line with the results reached by other studies.

Figure 6. Global flow map of embodied energy consumed in the UK. Energy used in the United States to produce goods finally used by UK
consumers is illustrated by a line between the U.S. and UK. Red, yellow, and green lines encode larger values. Line width encodes flow magnitude.
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479 using PPP exchange rates published by the OECD47 and
480 deflators published by U.S. Bureau of Labor Statistics.48 For
481 those countries where PPP exchange rates are not available,
482 market exchange rates published by the International Monetary
483 Fund (IMF) can be used (comparing with WIOD practice49).
484 The construction of constant-price Eora tables is part of
485 ongoing work.
486 In conclusion, the Eora tables represent a major advance in
487 the resolution, timeliness of multiregion input−output (MRIO)
488 tables, and therefore also in the relevance of a wide range of
489 applications such as carbon, water, and ecological footprinting,
490 and Life-Cycle Assessment. This advance was possible through
491 the development of a number of innovations such as a data
492 processing language, new optimization algorithms, advanced
493 computational solutions, and the simultaneous construction of
494 uncertainty estimates.
495 The free availability of Eora was intended to enable MRIO
496 databases to be accessible to a wider audience of analysts,
497 translating into more frequent usage of MRIO techniques in
498 applications to real-world problems.
499 The timeliness of Eora means that a host of MRIO time
500 series applications such as Structural Decomposition Analysis
501 will be able to generate more current and relevant results than
502 has been achievable so far. The multiyear delay of publication
503 of input−output tables is one of the most frequently cited
504 reasons for impediments to the uptake of input−output
505 techniques. Timely annual MRIO updates are now significantly
506 more feasible given the high degree of automation in Eora’s
507 construction procedures.
508 The high sector resolution in Eora is especially important if
509 carbon and water footprinting, consumer product labeling,
510 global-corporate emissions reporting, environmental life-cycle
511 assessment (LCA), and similar frameworks underpinning
512 decisions with a demand-side perspective are to attain
513 widespread and high-level policy relevance.50 This is because
514 input−output analysis is increasingly being recognized as an
515 indispensable component of hybrid footprinting and LCA
516 techniques combining the specificity of detailed product and
517 process data with the completeness of comprehensive input−
518 output data.12 One of the main perceived weaknesses of
519 existing IO components in footprinting and LCA methods is
520 the apparent lack of sector detail,5 and hence the development
521 of the Eora tables was guided by the goal of including the
522 largest possible number of sectors. For example, the production
523 of aluminum and copper entails significantly different levels of
524 electricity use, and therefore emissions. However, if those metal
525 industries were aggregated into a single “nonferrous metals”
526 sector then any copper products, such as motors, would be
527 assigned too high a carbon footprint because it would appear
528 that aluminum was part of the input into motors. Similarly, if
529 aquaculture and open ocean fishing are not distinguished it is
530 impossible to tell whether fish exports from a country come
531 from farms, with fewer sustainability implications, or from open
532 ocean fishing, with potentially serious overfishing and bycatch
533 concerns.
534 Eora’s country resolution is particularly important in
535 applications dealing with biodiversity and poverty indicators,
536 since these are particularly important for developing countries
537 that are not distinguished in existing MRIO databases.
538 Examples of such countries are Madagascar, a global hot spot
539 of endemic species threatened by habitat loss to agriculture,51

540 and Uzbekistan, where foreign demand of cotton places the
541 Aral Lake water metabolism under severe pressure.52 Any

542MRIO analysis aimed at identifying the global driving forces of
543threats to species in Madagascar, and of water use in
544Uzbekistan, must distinguish these as separate countries.
545Finally, it is essential that MRIO information is presented as
546values along with their standard deviations. Only then can users
547understand the assumptions and limitations underlying MRIO
548tables, engage in rational and informed debate, and facilitate
549transparent decision-making.
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