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Abstract
The environmental and social consequences of clearing tropical forests for palmoil and soybean
monoculture have been analyzed in a number of studies and are widely recognized. Some initiatives
and studies have examined portions of the supply chain from the perspective of individual companies
and stages in the supply chain.We complement this work by providing a consistent, detailed, global
trade-linked analysis of the fourmajor vegetable oils, connecting land use for production and its
biodiversity impact, through global supply chains, tofinal consumers. To this end, we develop a global
model by fully integrating FAO’s physical supply-utilization accounts into the environmentally
extendedmultiregional input–outputmodel EXIOBASE. Global supply chains are linkedwith the
life-cycle impact assessmentmodel LC-Impact to assess biodiversity impact of land use via global
maps of oil crop cultivation. For the period 2000–2010, wefind significant substitution of domestically
produced oils with relatively low biodiversity impacts with Indonesian palmoil and Brazilian soybean
oil for themajor consuming countries, China, Europe and theUS.Whereas soybean oil remains the
vegetable oil with the largest impact on biodiversity at a global scale, biodiversity footprints of palmoil
have grown substantially larger in the period 2000–2010, driven by demand fromEurope andChina.
Our results suggest that demand-side policies focused on specific oils, such as palmoil,might lead to
switching oils and unintended shifts of environmental impacts.

1. Introduction

Numerous studies have shown that land use and land
use changes driven by human demand for biomass
are the single most important driver for the loss
of terrestrial biodiversity (Bateman et al 2015,
Chaplin-Kramer et al 2015). Although the second half
of the last century has seen tremendous increases in
land productivity due to technological progress, this
efficiency gain has been strongly offset by population
growth and increasingly meat-intensive diets (Kastner
et al 2012, Weinzettel et al 2013). Apart from
deforestation for pasture land, clearing for oil crops
cultivation, especially of soybeans in Brazil and oil
palms in Indonesia and Malaysia, has been the most
aggressive driver of global biodiversity loss (Morton
et al 2006, Nepstad et al 2006, Carlson et al 2012).

In the past decades global oil crop production
grew more than twice as fast as all other agriculture
(Alexandratos and Bruinsma 2012). Besides being a
significant input in more affluent diets (Kastner
et al 2012) the non-food industrial and energy use are
the main driving forces of that rapid expansion (Valin
et al 2015). Whilst biofuels and biomaterials accoun-
ted for only 4% of harvested biomass in 2008 (Carus
and Dammer 2013), about 12% global oil crop pro-
duction was required for biodiesel alone (OECD/
FAO 2011). In some major economies like Brazil, the
EU, or Argentina, between 30%–65% of vegetable oil
is used for biodiesel. More recent figures suggest that
in 2014 almost half of the EU’s palm oil imports were
used for biodiesel (Transport and Environment 2016).
The increasing demand for bio-based oil for non-food
uses is expected to continue as governments and
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international organizations have set up strategies for fos-
tering the growth of the bio-economy. These strategies
aim at lowering dependency on non-renewable resour-
ces, mitigating climate change, and fostering job growth
especially in rural areas (OECD 2010, European Com-
mission 2012, Bell et al2017).

Since the pioneering paper of Lenzen et al (2012),
several studies have shown that large parts of local bio-
diversity threats are coupled with remote consumer
demand, emphasizing the need to complement con-
servation policies with consumer-focused policies.
However, the main consuming countries of embodied
biodiversity, as well as themost relevant supply-chains
and trade relationships, vary across different studies.
Apart from the metrics used for measuring biodi-
versity impacts (as discussed in Verones et al 2017,
Wiedmann and Lenzen 2018), the type of accounting
framework used to attribute these impacts to final
consumers is critically important and can severely
limit the explanatory power of footprint analysis
(Kastner et al 2014, Bruckner et al 2015, Hubacek and
Feng 2016).

Global multi-regional input–output (MRIO)
models provide a comprehensive mapping of the glo-
bal supply chain network in monetary units and show
how consumer demand in one country is linked to
biodiversity loss in another (Lenzen et al 2012, Kitzes
et al 2017, Moran and Kanemoto 2017, Verones
et al 2017,Wilting et al 2017). However, the commod-
ity details ofMRIOs are too low to allow studying foot-
prints of specific products such as different oil crops
and vegetable oils (Wiedmann et al 2011). Further-
more, allocating pressures based on monetary values
can be problematic in cases when prices of products
vary significantly across uses (Weisz and Duchin 2006,
Liang andZhang 2013).

In contrast, biophysical accounting methods
(Chaudhary and Kastner 2016, Chaudhary et al 2017,
Nishijima et al 2016, Sandström et al 2017), which are
based on FAO’s physical supply-utilization accounts
and bilateral trade data, offer much greater detail in
terms of products and countries. This allows for con-
sistent linking between production quantities and
environmental stressors, as in Chaudhary and Kastner
(2016), where such a model is linked with countryside
species-area relationship metrics estimated via high-
resolution crop maps. However, due to truncation,
biophysical accounting models are unable to trace
non-food use of biomass to final consumers, con-
stituting a severe drawback in assessing footprints of
crops that are primarily for industrial and energy pur-
poses such as vegetable oil. In order to exploit the
advantages of both frameworks some authors link bio-
physical flows into non-food industries with a mone-
tary EEMRIO (Weinzettel et al 2013, Bruckner
et al 2018). However, highly processed food which
embodies a large share of global vegetable oil produc-
tion still cannot be traced sufficiently, as FAO supply-

utilization accounts do not account for trade of oils
embodied in these foods (FAOStatisticsDivision 1972).

In this paper, we develop a novel maximum
entropy approach to integrate data from FAO’s sup-
ply-utilization accounts and high-resolution bilateral
trade data into the MRIO model EXIOBASE (Stadler
et al 2018). As suggested by Bruckner et al (2015), our
hybrid physical-monetary model provides a ‘best of
both worlds’ approach. We apply the model to a case
study of the biodiversity footprints of the major vege-
table oils (palm, soybean, rapeseed, and sunflower) as
well as their global development between 2000–2010.

2.Methodology

In this section, we describe the three main building
blocks of our research. Section 2.1 describes the
maximum entropy model that we used to construct
the hybridMRIO (HMRIO). We then explain how the
HMRIO is used to estimate land use footprints in
section 2.2, and then link with characterization factors
describing the biodiversity loss per occupied hectare in
section 2.3.

2.1.Mixed unit globalMRIOmodel
The mixed unit HMRIO is constructed using EXIO-
BASE as a backbone, which maps production, trade
and intermediate- and final consumption of 200
products and 49 regions (44 countries and 5 RoW
regions) (Wood et al 2014, Stadler et al 2018). EXIO-
BASE is particularly useful for this application, as it
already includes oil crops and vegetable oils as
aggregate sectors. The task here is then to (1)
disaggregate the oil crops and vegetable oil in mone-
tary units into the four oil crops and vegetable oils each
and (2) transform them into physical units.

This is done using a version of the entropy model
developed in Többen (2017), which allows for the
simultaneous estimation of monetary and physical
commodity flows by incorporating the value-to-
weight relationships (i.e. the prices per ton). The main
idea of this approach is to treat commodity flows
recorded in EXIOBASE and in the supply-utilization
accounts, such as intermediate consumption ofmanu-
facturing sectors (EXIOBASE) and non-food use
(FAO), as constraints both defining the sameflow.

We first construct an initial estimate of the physi-
cal crop and oil flows between a sector i in region r and
a sector j in country s in two steps. In step 1, we use
price allocation (Bruckner et al 2015) to distribute the
physical quantities reported by FAO for domestic con-
sumption infive utilization categories (food, feed, pro-
cessing (oil production), seed and industrial uses)
across the corresponding EXIOBASE sectors. Then, in
step 2, we use import shares from the physical layer of
the BACI bilateral trade database to breakdown the
intermediate and final consumption of oils and crops
in each country into the countries of origin.
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Afterwards, similarly to the typical approach of
constructing EEMRIOs (Golan and Vogel 2000,
Robinson et al 2001, Lenzen et al 2009, Wood
et al 2014), we reconcile this initial estimate (or prior)
with all available data by minimizing the distance
between the prior and the final HMRIO, subject to the
constraints that the latter be consistent with all avail-
able data. The most commonly used distance measure
in such applications is cross-entropy, also known as
Kullback–Leibler divergence (Kullback and Leibler
1951).

For notational convenience, we summarize the
commodity flows between a sector i in region r and a
sector j in country s by the compound index k, the data
points, g ,l from FAO and BACI measured in physical
quantities by index l and the data points, g ,m from
EXIOBASE andBACImeasured inmonetary values by
indexm.

Considering that prices per ton of a type of crop or
oil can differ significantly depending on the consum-
ing sector, we further break down the priors and target
values into three categories = { }n 1, 2, 3 accounting
for commodity flows at minimal, mean, and maximal
prices. Hence, the prior and the target values are deno-
ted by qkn and pkn respectively, and pkn denotes the
respective price per ton. Note, entropy models require
that qkn and pkn are expressed as fractions of the total
global amount of crops and oils consumed such that
both add up to one.

Sincemany data points, especially between the dif-
ferent datasets, are mutually inconsistent (Lenzen
et al 2009, Wood 2011), we split each data constraint
into a signal and a noise (error) component, and
incorporate cross-entropy measures of the error into
the model. The errors of each constraint are expressed
as a linear combination of = { }o 1, 2, 3 support
points slo and smo for each data points (defining lower
and upper bounds and expected values of errors) and
weights, wlo and w ,mo that add up to one (Robinson
et al 2001). Through priors for the constraint weights,
vlo and v ,mo we can assign subjective judgements of
uncertainty to each data point, whereby an even dis-
tribution (i.e. = = = /v v v 1 3l l l1 2 3 ) expresses high
uncertainty.

The entropy model for the construction of the
HMRIO can then be stated as minimizing the change
in the target values of the variables (pkn) from the prior
(qkn), and the change in the constraint weights (to han-
dle violation) for physical data (wlo from vlo) and
monetary data (wmo from vmo):
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where gkl and gkm are elements of concordance
matrices that take the value of one if a commodity flow
k corresponds to the data points l andm, respectively,
and are zero otherwise. As monetary constraints from
EXIOBASE we use total intermediate and final con-
sumption oil crops and vegetable oil of each sector j
and households, respectively, in each country s. The
model is implemented in GAMS and solved using the
non-linear programming solver CONOPT4.

2.2. Land use footprints
Overall, our approach is based on the samemethodol-
ogy that is generally used for the calculation of
emission or other environmental footprints (Wiebe
et al 2012, Tukker et al 2016). We use a standard
Leontief demand-pull model with the mixed unit
HMRIO to calculate the total land use requirement,
per crop, by consumers in each country for 2000 and
2010. This trade model follows all trade and transfor-
mation steps to reattribute production in s to con-
sumption in r via last supplying country t.

Themain assumption of the Leontief demand-pull
model is that, in the short run, intermediate inputs
from production sector i in producer country r
required by sector j in country s per unit of output,

Îa A,ij
rs are constant. The production level of sector i

in country r, Îx x,i
r that are directly and indirectly

required to satisfy final demand for product j pro-
duced in country s and consumed in country t,

Îy Y,
j
st can then be computed by

= - =-( )x I A y Ly,1

where L denotes the Leontief inverse.
The land use footprint of country s, ( )Fj

c s is the
total land area used by each production sector i in each
producer country r to supply final consumption-
inclusive of all the intermediate trade and processing
steps between original production and final consump-
tion-in country s of the good or service j. It can bewrit-
ten as

å å=( )F q L y ,j
c s

i r
i
r

t
ij
rt

j
ts

,

where q is the land area required to grow one ton of
crop per unit output, i.e. physical tonnes for the oil
crops (Kanemoto et al 2012). In a mixed-unit MRIO
mode, the Leontief inverse consists of four blocks.
These show the total requirements of (1) tons of the
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four oil crops required to produce one ton of
respective the crops (i.e. seed) and oils (i.e. processing),
(2) the monetary value of other inputs required to
produce one ton of crops and oil (e.g. fertilizers, labour
etc), (3) of tons of the four oil crops and oils of other
sectors to produce one EUR of output and (4) the
monetary value of other inputs of these sectors.
Similarly, final demand for oil crops and oils is
expressed in tons, while demand for other products is
expressed in EUR. Note that the harvested area of each
crop in each country, as well as the produced and
consumed quantities of each crop and oil, are based on
FAO data. Thus, our approach also accounts for
changes in the yields per hectare between 2000–2010.

2.3. Estimating biodiversity impacts
The LC-Impact impact assessment method (Verones
et al 2016) offers a spatially-differentiated approach
for assessing environmental impacts on biodiversity
and human health. Regarding impacts on biodiversity
(species-richness is used as a proxy), different impact
categories, such as land use, water consumption, and
eutrophication are covered. Only land use is relevant
for this work. The model is based on Chaudhary et al
(2015), modelling the potential damage due to land
occupation and transformation. The approach is
spatially-explicit for all 804 terrestrial ecoregions
(Olson et al 2001) and six land use types (annual crops,
permanent crops, urban areas, pasture, intensive and
extensive forestry). The model provides characteriza-
tion factors that quantify the biodiversity impact in
terms of ‘potentially disappeared fraction of species’
(PDF) per hectare of land use. A novel concept in LC-
Impact and Chaudhary et al (2015) is the inclusion of a
vulnerability term in the characterization model. This
term recognizes that some species and ecosystemsmay
be more susceptible and more vulnerable to anthro-
pogenic changes than others. Thus, we can account
not only for spatial differences in the underlying
abiotic environmental conditions, but also in the
vulnerability of species to pressure. This vulnerability
approach is based on geographical distribution and
the threat level of species. A description of the
approach is included inChaudhary et al (2015).

We multiply the crop maps (You et al 2014) (in
units of hectares of physical land used per grid cell)
with amap of the characterization factors for the occu-
pation of permanent crops for oil palm and of annual
crops for the other three oil seeds. Thereafter we com-
pute average PDFs per hectare of harvested area for
each EXIOBASE country based on area-averaged
weighting. Since the cropmaps deliver information on
both the physical and the harvested area, multiple har-
vests within a year are taken into account. This con-
verts the global land use footprints for a given
consumer country from hectares to units of PDF,
showing the biodiversity impact of consumption. The
approach is analogous to (Verones et al 2017) and a

mathematical exposition of the method can be found
there.

3. Results

Globally, the largest impact on biodiversity amongst
the 4 oil crops is from soybean cultivation (59%),
which also occupies the largest area among the four
crops (50%). Oil palms, in contrast, occupy only 10%
of the total oil crop land area but are responsible for
37% of the total biodiversity impact. The average
biodiversity loss per hectare used for cultivating palm
oil is thus more than four times larger than that of
soybean. Oil palm are exclusively cultivated in tropical
and biodiversity-rich areas, while a large portion of
global soybean cultivation (with the exception of in
Brazil) takes place in much less vulnerable ecoregions
especially in the US. Rapeseeds and sunflowers occupy
19% and 13% of global cropland devoted to oil seed
production, but only cause 9% and 4% of the
biodiversity loss, respectively. Since 2000, the share of
palm oil in the global biodiversity loss due to vegetable
oils has strongly increased by 6.3 percentage points
(pp) at the expense of sunflower (−2.4 pp) and
especially rapeseed oil (−4.2 pp).

3.1. Per capita biodiversity footprints in 2010
Figure 1 shows the per capita biodiversity footprints of
countries and world regions in 2010 related to the
cultivation of oil palm (a), rapeseed (b), soybeans (c),
and sunflowers (d). The per capita footprints are
normalized taking the global biodiversity footprint per
capita of palmoil as a reference.

Results show that the twomajor hotspots of biodi-
versity loss due to oil palm cultivation in South East
Asia and soybean cultivation in Latin America are ulti-
mately driven by very different consumption patterns.
The biodiversity loss related to oil palm cultivation is
mainly driven by consumers from Western Europe
and Australia, whose per capita biodiversity footprints
are between 3.5 and up to 13 (Luxemburg) times larger
than the global average. In other high-income coun-
tries, such as USA, Canada and Japan, biodiversity
footprints of palm oil are well above the global average
with 50%–80%, but significantly lower compared to
Western Europe and Australia. In contrast, in the
emerging economies of China and India, who are
among themajor consumers of biodiversity embodied
in palm oil in total, per capita footprints are 30% and
60% lower than the global average, respectively.

In comparison, the biodiversity losses related to
soybean cultivation, especially in Brazil, are strongly
driven by consumers from the same country, who
have per capita footprints that are more than 10 times
larger than the reference. Interestingly, the USA, who
are the world’s largest producers of soybeans, also
drive significant biodiversity losses in Brazil with per
capita footprints that are three times larger than the
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reference. In contrast to palm oil, where European
countries generally showed the largest per capita foot-
prints, high per capita biodiversity footprints related
to soybean cultivation can only be observed for few
countries, such as Norway, the Netherlands, Spain,
and Italy.

Generally, compared to the biodiversity loss due to
oil palm and soybean cultivation, the other two major
oil crops, rapeseed and sunflowers, play only a very
minor role. The only notable exception is the biodi-
versity loss related to rapeseed cultivation in Australia,
byAustralian consumption.

3.2. Temporal changes in per capita footprints
In terms of the percentage changes in per capita
biodiversity footprints related to palm oil between
2000–2010 as shown in figure 2, the largest increases
can be observed for Russia and the eastern European
countries of Romania, Bulgaria, and Slovakia, where
footprints increased by more than 300%. Apart from
increases due to processed food consumption and
industrial use, substitution of locally-produced sun-
flower oil with palm oil can be observed for some
countries and products. In Russia, for example, fish is
one product with the largest biodiversity footprint

Figure 1.Biodiversity footprints per capita in 2010 of oil seeds and vegetable oils from (a) oil palms, (b) rapeseed, (c) soybean and (d)
sunflower. Biodiversity footprints are normalized by global per capita footprint of palmoil. Color scale from−1 (=−100%) to 4
(=400%).

Figure 2.Relative change of biodiversity footprints per capita between 2000–2010 of oil seeds and vegetable oils from (a) oil palm,
(b) rapeseed, (c) soybean and (d) sunflower. Color scale from−1 (=−100%) to 3 (=300%).
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related to vegetable oils. Here, the biodiversity foot-
print related to sunflower oil decreased by 23% and
40% respectively, while the footprint related to palm
oil increased by more than 300%. Among the major
consumers of biodiversity embodied in palm oil,
China (215%) and Indonesia (180%) show the largest
increases in per capita footprints. In comparison, the
increases in per capita footprints of Germany, France
(both about 70%), the USA (64%), and especially the
UK (36%) were much more moderate. The per capita
footprint of India remained basically unchanged.

Regarding the percentage changes of per capita
footprints between 2010–2000, outcomes for soybean
are remarkably different compared to palm oil.
Among the major consumers, only China shows an
increase of comparablemagnitude as increases of foot-
prints observed for palm oil with about 150%. In
Brazil and the USA, by contrast, the per capita foot-
prints increased far less starkly, about 50% and 20%,
respectively. In Europe, the most populous countries
show increases in per capita footprints of similar mag-
nitudes, ranging from 20% in Germany to about 50%
in the UK and France. A further difference in per
capita footprint changes related to palm oil is that
several countries show a significant decrease in the
soybean-related footprints, from about−5% in Japan
to up to−30% inNorway andPoland.

3.3. Embodied biodiversity in trade
Figure 3 shows the land use (top panel, ha) and
biodiversity (bottom panel, ‘potentially disappeared
fraction of species’ pdf) footprints of countries and
world regions in 2010 (background bars) and 2000
(foreground bars) related to the cultivation of oil palm,
rapeseed, soybean and sunflower. Intra country use
(solid), imports (shaded) and exports (hatched) are
further distinguished. Countries are rank ordered
according to the magnitude of their footprints. The
EU countries, Switzerland and Norway are summar-
ized as EU (west) and EU (east), as their respective per
capita consumptions differ significantly (see figure 1).
Land occupation often serves as a proxy for pressure
on ecosystems due to agricultural production, while
the biodiversity footprints show the actual conse-
quences of the pressure from land use in biodiversity
taking the vulnerability of ecosystems into account.

In absolute terms, by far the largest land use and
biodiversity footprints in 2010 are observed for China.
Its biodiversity footprint has grown by almost 100%
over a decade. While China already was the country
with the largest biodiversity footprint in 2000, it has also
surpassed theUS between 2000–2010 as the largest con-
sumer of cropland used for oil crops. The land use foot-
print of the USA is twice as large as that of Brazil,
however, the actual impact on ecosystems of that land
use is substantially lower than that of Brazil as the biodi-
versity impact of US farming is substantially lower than

that of Brazilian farming. In both measures, India is
ranked third. Other remarkable cases of countries that
show substantially different land use in comparison to
biodiversity impacts are Russia and Indonesia.

The growth of biodiversity footprints is to a large
extent due to outsourcing of environmental pressure to
abroad. Whilst China’s consumption of domestic biodi-
versity related to soybean and sunflowers decreased by
20% and 32%, respectively, imports of biodiversity
embodied in palm oil and soybean have increased by
200% and 280% respectively. Our results show similar
outcomes for other major consumers of biodiversity. In
western and eastern Europe (which taken together are the
second largest consumers of cropland and biodiversity)
the consumption of domestic biodiversity reduced by
24% and 45% respectively. This reduction in impact is
primarily due to cropland used for the cultivation of sun-
flowers decreasing by 37% and 64%, respectively. At the
same time, the EU’s imported biodiversity increased by
62%. The main drivers of the increase of EU’s biodi-
versity footprint is the tremendous growth of palm
oil imports from Indonesia, soybean oil from Latin
American countries other than Brazil (which remained
constant), as well as of rapeseed from Australia and
Southeast Asia. The biodiversity consumption through
soybean from Brazil, by contrast, remained constant and
the increase in EU’s consumption of biodiversity loss
embodied in soybean of 33% is due to a shift to imports
fromotherLatin–American countries.

As for Europe and China, the USA also outsourced
substantial environmental impacts between 2000–2010
by reducing the consumption based impacts on domestic
biodiversity (−17%) but increasing the consumption
based impacts on imported biodiversity loss (64%). Here,
especially the sales of soybean to domestic markets
reduced, whereas the US exports to China almost tripled.
At the same time, the demand of the US was increasingly
satisfied by soybean imports fromBrazil, which did triple
during that period. Overall, the US is the second largest
net exporter (after Latin–America) of cropland used for
the cultivation of oil crops and the third largest net-
importer of biodiversity impacts (after EU and China).
Besides the increase in biodiversity imports from Brazil,
substantial increases of biodiversity embodied in palm oil
consumption can be observed, although it plays a far
smaller role compared toEurope andChina.

All of the four main exporting countries and
regions of biodiversity: RoW Asia (primarily due to
palm oil from Malaysia), RoW America, Brazil and
Indonesia; have further increased their exports
between 2000 and 2010. This is especially true for
Indonesia, which almost surpassed Brazil in exported
biodiversity loss in 2010 after seeing a growth rate of
almost 180% over the decade. In addition to exported
biodiversity impacts, all of the four countries and
regions also show substantial increases in domestic
consumption of biodiversity, whereby in RoW Asia
and RoW America consumption within the regions
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have grown almost twice as fast as exports. However, it
should be noted that especially in RoW Asia a large
share of this apparently domestic consumption is due
to the aggregation of countries. Nonetheless it shows
that nearbymarkets have becomemore important.

4.Discussion

4.1. Comparisonwith other studies
Previous work on the biodiversity impacts of interna-
tional trade dynamics are either purely based on
monetary MRIO models (Lenzen et al 2012, Kitzes
et al 2017, Moran and Kanemoto 2017, Verones

et al 2017, Wilting et al 2017) or on biophysical
accounting methods (Chaudhary and Kastner 2016,
Nishijima et al 2016, Chaudhary et al 2017, Sandström
et al 2017). The differences between the results
delivered by the two approaches can be attributed to
their specific assumptions and limitations. A number
of papers have investigated the differences and advan-
tages and disadvantages of monetary versus physical
accounts for biophysical accounting; in particular see
(Kastner et al 2014, Weinzettel et al 2014, Bruckner
et al 2015, Hubacek and Feng 2016, Weinzettel and
Wood 2018). Bruckner et al (2015) concluded in their
review that hybrid monetary/physical models are the

Figure 3. Land use (top panel, ha) and biodiversity (bottompanel, pdf) footprints in 2010 (background bars) and 2000 (foreground
bars) related to the cultivation of oil palm, rapeseed, soybean and sunflower. Intra country use (solid), imports (shaded) and exports
(hatched) are further distinguished. Countries are rank ordered according to themagnitude of their footprints.
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best way forward. That conclusions was part of the
motivation for this work.

In this paper, we develop a fully integrated
HMRIOmodel that overcomes the specific limitations
of both approaches.

With currently available monetary MRIO models
studying embodied environmental impacts related to
very specific products such as the different vegetable
oil as in our analysis would not be possible, due to
insufficient level of product detail. For example, even
in the most detailed MRIO databases in terms of agri-
cultural products (i.e. EXIOBASE and GTAP), oil
seeds are lumped together into one product category.
As a consequence, previous MRIO studies only aim at
providing a comprehensive global picture of how con-
sumer demand in one country is linked to biodiversity
loss in another, rather than identifying biodiversity
losses along the supply chains of specific biomass-
based products.

Furthermore, our hybrid monetary-physical
approach allows for amuchmore natural link between
production levels, land requirements and resulting
biodiversity losses. For example, in monetary MRIO
models land requirements are expressed in (ha/$),
which can lead to erroneous allocation of land use and
biodiversity loss in cases where prices differ for pro-
ducts from the same category, e.g. due to quality dif-
ferences while we use ha/yield.

Finally, compared to pure biophysical accounting
methods, our approach avoids truncation errors,
which especially occur for highly processed non-food
products. In Chaudhary and Kastner (2016), for
example, it was found that the large biodiversity foot-
prints of US consumers in Indonesia are pre-
dominantly related to rubber, coffee and cacao, but
not to palm oil, which is rather driven by Chinese,
Indian and European consumers. In this paper, by
contrast, we found that biodiversity footprint related
to oil palm cultivation of the USA is actually larger
than that of India. The reason for this difference is that
purely biophysical accounting systems cannot take
highly complex non-food supply chains into account.
In fact, the vast majority of the US’ biodiversity
impacts are embodied in chemical products, machin-
ery and equipment imported fromEurope andChina.

4.2. Limitations
The HMRIO approach used in this paper constitutes a
potentially useful alternative to EEMRIOs and biophy-
sical accounting especially for estimating land use and
biodiversity footprints. The advantages of a HMRIO
model over its competitors come especially into play
in this application, where we compare footprints of a
very specific product, i.e. different kinds of vegetable
oil, which are substantially used for producing highly
processed food products, biofuels and non-food
manufactured products. However, while the estima-
tion of biodiversity impacts is done in a spatially

explicit manner, amain shortcoming remains with the
country resolution of EXIOBASE used as backbone,
which prevents a detailed analysis biodiversity embo-
died in commodity flowswithin theRoW regions.

Additionally, while the method developed here
significantly improves the resolution of products, the
well-known problems due to product aggregationmay
still have an effect on the results. To give a hypothetical
example of this, consider a country which grows and
exports two types of coffee: monocropped coffee and
shade-grown coffee. Say the shade-grown coffee
industry has a smaller negative effect on biodiversity. If
the trade data for the country only report its exports of
coffee in total, but the country exports exclusively
shade-grown coffee to one set of trade partners, and
exclusively monocropped coffee to another set of des-
tinations, the model will not be able to distinguish
these two different products and will treat the two
export flows of coffee as identical, even though the two
different products have different quality and biodi-
versity impacts. This is one example of how differences
in product quality, and product-level detail can affect
model results. Furthermore, MRIO models, like the
one used here, currently do not trace flows at the sub-
national level, that is, if a particular subnational region
has export patterns different than the national average.
Hence, the model assumes exports are sourced homo-
genously within a country, but analogously to the pre-
vious example, export goods may be sourced from a
different region, with a different biodiversity profile,
than production as a whole; this could lead to biases in
the result footprint calculations. These errors from
aggregation and spatial misallocation have been dis-
cussed in the literature (Steen-Olsen et al 2014, Moran
and Kanemoto 2017). Multi-scale MRIOs would
help in this regard, and efforts have been initiated
(Bachmann et al 2015, Godar et al 2015, Többen and
Kronenberg 2015,Wenz et al 2015).

Here we have included the impacts of land occupa-
tion from oil crop production globally. Other impacts
categories may influence the biodiversity footprints as
well, for example water consumption and fertilizer
and pesticide application. However, land occupation
is generally recognized to be the dominant driver for
the loss of (terrestrial) biodiversity (Verones
et al 2017).

LC-Impact provides characterization factors for
804 terrestrial ecoregions, which were combined with
maps showing production, harvested area and physi-
cal area of each type of oil crop at 10 km×10 km
resolution for 2005, in order to compute average char-
acterization factors per hectare by oil crop and coun-
try. While changes in yields per hectare over time are
taken into account at country level, the use of average
characterization factors from 2005 for previous or
later years implicitly assumes that expansions of crop-
land have taken place at locations with the same aver-
age vulnerability. This may lead to an over-or
underestimation of footprints. In addition, we do not
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know the exact configuration of the land used in the
characterization models, meaning that we do not
account for the impacts of fragmentation. Rather, the
model assumes that all natural habitat or human-
modified land is available as large chunk of con-
tinuous land.

Finally, LC-Impact uses mammals, birds, reptiles,
amphibians and plants as proxies for assessing the
impacts on biodiversity (species richness). We assume
that this selection of taxonomic groups represent dif-
ferent niches of the ecosystem and are therefore suited
for acting as proxies for the entire ecosystems and spe-
cies richness. Information for other taxonomic groups
was too scarce to be implemented in a consistent way
into the characterizationmodel.

5. Conclusion

Using a HMRIO, we estimate and compare the biodi-
versity footprints related to the fourmajor vegetable oils.
Compared to more traditional accounting methods
such as pure monetary EEMRIO or purely biophysical
models, our approach is particularly advantageouswhen
analyzing very specific commodities instead of broad
commodity groups. The HMRIO was constructed with
an entropy model that allows for simultaneously
reconciling partial and possibly conflicting information
measured in physical and monetary units provided by
the MRIO, FAO’s supply-utilization accounts and
bilateral trade data. By doing this, we are able to add
high-resolution data to show the differences in impacts
of the four oil crops, which are usually treated as one
commodity in the purelymonetarymodel.

The results show that soybeans from Brazil embo-
died in final products is still responsible for the largest
biodiversity losses in 2010. Compared to 2000, biodi-
versity loss associated with the cultivation of oil palm
in Indonesia and Malaysia has increased significantly
and was mainly driven by the consumption of highly
processed food inChina and Europe.

Especially in Europe, the demand for chemical and
othermanufacturedproducts andbiofuels are additional
drivers. Recent figures (Transport and Environment
2016) suggest that in particular biofuel production has
become themost important use category inEurope,with
an increase of from 8% in 2010 to 45% in 2014 of total
vegetable oil use in Europe. In the light of the EU’s bio-
economy strategy (European Commission 2012) it can
be expected that non-food uses further drive cropland
expansions in some of the world’s most vulnerable eco-
systems in the future. To further investigate this, our
approach here, could be combined with a forward-look-
ingMRIOanalysis (Wiebe et al2018).

First steps to address this issue with demand side
oriented policies have been taken by the European
Parliament’s environment committee by voting for a
ban of all vegetable oil from biofuels by 2030 and of
palm oil by 2021 (Biofuels International 2018). While

this is a promising first step for fostering conservation
of rainforest especially in Southeast Asia, it must be
taken care that different years of the ban between palm
oil and soybean oil from does not lead to unintended
shifts from one oil seed to another. Replacing the palm
oil currently used for biodiesel with soybean oil from
tropical areas potentially leads to more pressure on
rainforest due to themuch lower yield per hectare.
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